

SISTEMAS DE CONTROLE PARA MÍSSEIS TÁTICOS NO IME

Paulo Sergio de Carvalho Alvarenga

Matéria de natureza informativa sobre os Sistemas de Controle para

Misseis existentes no Instituto Militar de Engenharia.

INTRODUÇÃO

s Sistemas de Controle desempenham papel vital no avanço da engenharia e da ciência. Além de possuírem grande importância nos sistemas de pilotagem de aeronaves, mísseis guiados e nos veículos espaciais, eles se tornaram parte integrante dos modernos processos industriais e de fabricação.

Os avanços teóricos em Sistemas de Controle têm propiciado condições para que sejam alcançados tanto o desempenho ótimo de sistemas dinâmicos, quanto a melhoria de qualidade, redução de custos e aumento de produtividade nos processos industriais.

A seção de Engenharia Elétrica do Instituto Militar de Engenharia (IME)

possui três áreas de concentração em nível de mestrado:

- Sistemas de Controle;
- Eletromagnetismo Aplicado e
- Processamento de Sinais.
 Este trabalho enfoca a primeira delas.

RESUMO HISTÓRICO

O marco inicial das atividades de investigação científica em Sistemas de Controle (SC) no IME foi a designação de um oficial engenheiro, ali graduado, para freqüentar o curso de mestrado dessa área na Universidade de Stanford, EUA. Trata-se do então Maj Eng Eltr Haroldo Correa de Mattos, que foi o primeiro Mestre em Ciências em Sistemas de Controle do País. Retornando de Stanford em meados da década de cinqüenta,

foi novamente servir no IME, quando implantou o então Laboratório de Automação, atual Laboratório de Sistemas de Controle da Seção de Engenharia Elétrica, cujo início de funcionamento ocorreu em 1961.

O Exército Brasileiro é, assim, pioneiro no ensino de Sistemas de Controle no Brasil. Além disso, foram oficiais engenheiros militares aqui formados que criaram os cursos de pós-graduação (mestrado) em Controle na PUC do Rio de Janeiro e na UFRI

Entre 1961 e 1970, os trabalhos nessa Área de Concentração (AC) se limitaram aos Projetos de Fim de Curso de graduação de interesse do Exército, nas engenharias elétrica e eletrônica. A partir de 1971, o IME começou a formar recursos humanos em nível de mestrado na AC Sistemas de Controle.

Até 1990, foram apresentadas 37 teses, por militares e civis, assim distribuídas no tempo:

71 a 81 — 10 (1 por ano) 82 a 85 — 11 (2,7 por ano) 86 a 90 — 16 (3,2 por ano)

Entre 1983 e 1989, o Exército enviou seis oficiais do QEM, mestres em Sistemas de Controle, para frequentar cursos de doutoramento no exterior, cinco na França e um nos EUA. Cinco já retornaram com absoluto sucesso em suas respectivas teses, atestando o nível de excelência de sua formação profissional no EB. Dois servem no IPD, um cursa o CPAEx, dois foram transferidos

para a reserva e um encontra-se ainda na França, no último ano de seu doutoramento.

COMPOSIÇÃO E OBJETIVO

A área de concentração em Sistemas de Controle, da Seção de Engenharia Elétrica do IME, compõe-se de duas linhas de pesquisa (LP). sendo estas desdobradas em nove atividades (ATV):

LP₁ — Teoria e Métodos

ATV₁ — Simulação

ATV₂ - Modelagem, identificação e estimação

ATV₃ — Otimização ATV₄ — Análise e Síntese

LP₂ — Tecnologias Básicas

 ATV_I — Hardware

 ATV_2 — Software

ATV₃ — Transdutores

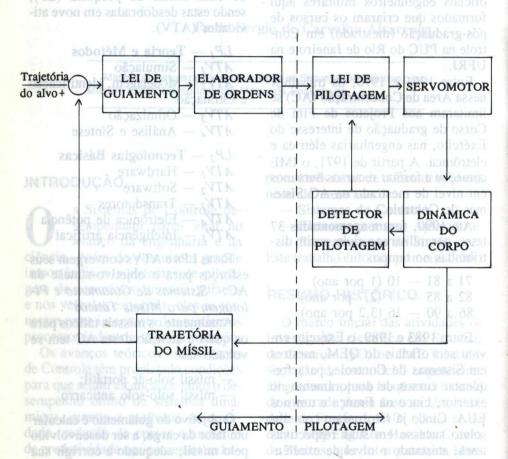
ATV₄ — Eletrônica de potência ATV₅ - Inteligência artifical

Essas LPs e ATVs convergem seus esforços para o objetivo-síntese da AC: "Sistemas de Guiamento e Pilotagem para Míseis Táticos".

Atualmente os mísseis táticos para os quais a atenção desta AC tem se

voltado são:

míssil solo-ar portátil;


- míssil solo-solo anticarro.

O objetivo do guiamento é calcular um fator da carga, a ser desenvolvido pelo míssil, adequado a corrigir sua trajetória, visando à interceptação do alvo. Essa ação é considerada concluída quando os dois corpos atingem,

SISTEMAS DE CONTROLE PARA MÍSSEIS TÁTICOS NO IME

no mesmo instante, um mesmo ponto do espaço, ou dois pontos tão próximos quanto possível, de modo a possibilitar a destruição do alvo pela atuação dos sensores de proximidade.

O objetivo da pilotagem é executar as ordens de guiamento e controle do míssil, ou seja, provocar as mudanças de atitude necessárias ao desenvolvimento, por meio de suas superfícies de atuação, das forças aerodinâmicas adequadas à realização das manobras ditadas pelo sistema de guiamento, sem deixar de atender aos requisitos ligados à estabilidade do veículo.

ELEMENTOS CONSTITUTIVOS DE UM SISTEMA DE GUIAMENTO E PILOTAGEM

Enquanto o guiamento trata do movimento, no espaço, do centro de gravidade do míssil, a pilotagem se ocupa dos movimentos do engenho em torno de seu centro de gravidade.

Em outras palavras, as malhas de controle para guiamento e pilotagem de um míssil são responsáveis, respectivamente, pela escolha de uma trajetória para atingir o alvo e por mantê-lo nessa trajetória, a despeito de perturbações externas ou internas.

TRABALHOS CONCLUÍDOS

Mestrado:

- Análise de Erros em Sistemas de Estabilização de Plataformas Inerciais devidos a Giroscópios Sintonizados (77):
- Estudo de Sistemas de Direção de Mísseis Rotativos (78);
- Atuadores Elétricos em Pilotagem Automática (82);
- Pilotagem de Mísseis Táticos na Fase de Cruzeiro (82):
- Estudo de Controladores de Tempo Mínimo para Sistema de Pilotagem de Mísseis (83);
- Controle em Atitude com Afastamento Mínimo de um Míssil Estabilizado Aerodinamicamente por Empenas (84);
- Estudo de Algoritmos para Central Inercial com Componentes Vinculados a Bordo de Engenhos com Trajetória de Curta Duração (84);
- Estabilização e Controle de Grandes Sistemas (85);
- Um Modelo de Guiamento para um Míssil Solo-Ar Rotativo (87);

- Identificação de Parâmetros Aerodinâmicos de um Míssil Tático (87);
- Conceitos, Testes e Especificações de Dispositivos Inerciais para Mísseis Solo-Ar (87);
- Modelo de Eficácia para o Míssil Tático Solo-Ar Portátil (87):
- Seleção do Procedimento de Guiamento de Mísseis Táticos (89);
- Controle Otimo com Objetivos de Rastreamento e Margem de Estabilidade (89).
- Otimização do Guiamento de Míssil de Concepção Monoplanar pelo Método das Perturbações Singulares Forçadas (89);
- Uma Contribuição ao Estudo do Acompanhamento de Alvos Múltiplos (90):
- Uma Contribuição ao Estudo do Acompanhamento de Alvo Manobrante (90).

Graduação:

- Instrumentação Eletrônica no Estudo da Jato-Propulsão (61);
- Sistema de Telemetria para Foguetes (66);
- Sistema de Sinalização e Segurança para Rastreamento de Mísseis Táticos do Campo de Provas da Marambaia (72);
- Sistema de Telemetria para Foguete de Médio Porte (73);
- Sistema de Telemetria para Foguete de Médio Alcance (75);
- Unidade de Controle para Sensores Giroscópicos (76);
- Simulador de Teleguiamento de Mísseis (78);

SISTEMAS DE CONTROLE PARA MÍSSEIS TÁTICOS NO IME

Sensores Giroscópicos para Instrumentação de Mísseis (82);

• Sistemas Giroscópicos (83);

- Guiamento de Sistemas Controlados (84);
- Sistema de Controle de Posição para Rampa de Lançamento de Mísseis (85);

• Motor de Passo (85);

 O Motor de Passo e uma Aplicação a um Manipulador Polar Controlado a Malha Aberta (85).

• Simulação do Míssil Roland

(88);

 Laboratório de Sistemas de Controle (90).

PESQUISAS EM ANDAMENTO EM 1991

Requisitos funcionais para mísseis anticarro

Projeto iniciado em fevereiro, com os objetivos de:

- levantar o estado atual da arte quanto à concepção de mísseis anticarro;
- analisar o desempenho de um míssil anticarro na fase de engajamento terminal, por meio de guiamento fora da linha de visada e engajamento pela parte superior do carro;

 determinar os requisitos funcionais da malha de guiamento do míssil.

Redução de ordem de modelos de manipuladores robóticos

Projetos iniciado em março, com os objetivos de:

- desenvolver modelos de manipuladores robóticos empregando grafos de ligação;
 - implementar estratégias de con-

trole para os modelos desenvolvidos;

 reduzir a ordem dos modelos de manipuladores robóticos empregando o método das perturbações singulares em grafos de ligação;

• simular os modelos desenvolvi-

dos para avaliar os resultados.

Controle de mesa inercial, via computador, para testes em girômetros, giroscópios e acelerômetros

Projeto iniciado em março, com os objetivos de:

- elaborar "software" para gerenciamento da operação da mesa inercial;
- especificar e montar equipamentos periféricos para a mesa:
 - placa de aquisição de dados AD;
 - placa de ganho do girômetro;

- placa de relés;

- placa de interface HP-IB.

INTERCÂMBIO E COOPERAÇÃO

Esta área de concentração desenvolve seus trabalhos com fortes laços de intercâmbio e de cooperação com o IPD (Instituto de Pesquisa e Desenvolvimento) e com a Seção de Engenharia Mecânica e de Materiais (SE/4) do IME.

Engenheiros militares do IPD oferecem, no IME, cadeiras de mestrado desta área e orientam algumas teses de mestrado e trabalhos de graduação; projetos de fim de curso (5º ano), trabalhos de iniciação à pesquisa (4º ano) e temas dirigidos (2º ano). Neste ano, por exemplo, o terceiro trabalho

do item 5 é de interesse do IPD e está sendo desenvolvido lá por três alunos do 5º ano de engenharia eletrônica, sob a orientação de engenheiro militar daquela unidade.

Com a SE/4 do IME a cooperação é também muito estreita, por intermédio da atividade "Modelagem, Simulação e Controle" de sua linha pesquisa em "Análise de Sistemas Dinâmicos". Os alunos de uma seção de ensino cursam cadeiras de mestrado na outra, dentro da área de controle. Com os professores o intercâmbio se dá tanto na orientação dos trabalhos acadêmicos de mestrado e de graduação, quanto na composição das bancas de exame desses trabalhos.

OUTRAS POSSIBILIDADES DA ÁREA DE CONCENTRAÇÃO

A área de concentração em Sistemas de Controle, dispondo dos meios humanos e materiais necessários, poderia também atuar em outros campos da tecnologia de interesse militar, além de "Sistemas de Guiamento e Pilotagem para Mísseis Táticos".

Canhão Antiaéreo

Malha de controle para posicionamento automático de canhões obedecendo a sinais de radar.

Radar

Malha de controle para posicionamento automático de antenas de radar.

Carro de Combate

Pontaria e estabilização de tubos de canhão para tiro com carro parado e em movimento.

Veículos Remotamente Pilotados

Pilotagem e guiamento de drones e alvos aéreos.

BIBLIOGRAFIA

PROJETO INSTITUCIONAL FINEP 1991/1992, Seção de Engenharia Elétrica, IME, Rio — RJ, apresentado à Financiadora de Estudos e Projetos.

PAES RIOS, Sérgio Ricardo, Ten Cel QEM Eltr, "Seleção do Procedimento de Guiamento de Mísseis Táticos", Instituto Militar de Engenharia, Tese de Mestrado, RJ, 1989, pp xxviii-317.

Nota: O autor agradece a colaboração do Major QEM Eltr Silvio Ari Kerscher e do Major QEM Elt Ricardo Zelenovsky no levantamento de dados para a preparação deste artigo.

Ten Cel QEM PAULO SÉRGIO DE CARVALHO ALVARENGA — Possui os cursos de Material Bélico da Academia Militar das Agulhas Negras (AMAN-71), graduação em Engenharia Elétrica no Instituto Militar de Engenharia (IME-80) e mestrado em Engenharia Elétrica/Controle (IME-87). Possui, ainda, os cursos Básico, Mestre de Saltos e Estágios Básico e Avançado de Salto Livre da Brigada Pára-Quedista. Trabalhou em projetos, montagens industriais, manutenção elétrica e custos industriais na Fábrica Presidente Vargas da IMBEL, em Piquete-SP. Concluiu o curso de Mestrado em Engenharia Elé-

trica do IME em 1987. Atualmente é professor da Seção de Engenharia Elétrica do IME e gerente da área de concentração em Sistema de Controle.