
Detection of Cyber Attacks using
Machine Learning: A Review
Ricardo da Silveira Lopes*, Julio Cesar Duarte and Ronaldo Ribeiro Goldschmidt
Military Institute of Engineering (IME)
Praça Gen. Tibúrcio, 80 – Urca, Rio de Janeiro – RJ, 22290-270
*ricardo.lopes@ime.eb.br

ABSTRACT: With the public availability of simulated intrusion
detection datasets, Machine Learning has been increasingly used
in cyber attack detection work. Despite the fact that the performance
(precision and recall) has been highlighted, on the other hand, there has
been a lack of critical analysis of what was actually learned by the model,
with the intention to conclude whether or not this performance will be
maintained in real applications. In this sense, explainability techniques
appear as a promising possibility in the execution of this task, since the
analysis of the False Positive Rate of these models has usually been
neglected. This can become an important problem, with the increase in
speed and amount of data transmitted over the internet. This research
proposes to raise discussions about these problems, presenting some
articles related to them.

KEYWORDS: Intrusion Detection. Machine Learning. Explainability.
False Positive Rate.

RESUMO: Com a disponibilização pública de bases de dados simuladas
de detecção de intrusão, o Aprendizado de Máquina vem sendo
empregado, cada vez mais, em estudos de detecção de ataques cibernéticos.
Se, por um lado, tem-se destacado o desempenho (precisão e abrangência)
obtido, por outro, tem havido uma carência na análise crítica sobre o que
de fato foi aprendido pelo modelo, visando concluir se haverá ou não a
manutenção desse desempenho em aplicações reais. Nesse sentido, técnicas
de explicabilidade surgem como uma possibilidade promissora na execução
dessa tarefa, uma vez que, usualmente, vem sendo negligenciada a
análise da Taxa de Falso Positivo desses modelos, o que pode se tornar um
problema importante, com o aumento da velocidade e quantidade de dados
trafegados pela internet. Esta pesquisa se propõe a levantar discussões
sobre esses problemas, apresentando alguns artigos a eles relacionados.

PALAVRAS-CHAVE: Detecção de Intrusão. Aprendizado de Máquina.
Explicabilidade. Taxa de Falso Positivo.

 RMCT • 1

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

1. Introduction

The emergence of internet has
revolutionized modern life, making it
possible to carry out numerous activities

online. Purchases, banking transactions, meetings,
classes, courses, interactions via social networks, text,
voice and video communication, remote management,
etc., have become everyday activities in society [1].
On the other hand, the increased use of informatics
and online tools has brought with it vulnerabilities
widely exploited by ill-intentioned individuals and
organizations through malicious actions in cyberspace.
These actions are known as cyberattacks or intrusions,
and cause considerable harm to users and businesses
that inevitably use the Internet. Typically, these attacks
have diverse purposes, such as illicitly obtaining
financial benefits, harming institutions, propagating
ideologies and even terrorism [2].

Thus, cyberattacks have been an increasing
problem as society becomes more dependent on
information technology. Two factors are responsible
for this problem: the existence of vulnerabilities in
information systems and the presence of agents with the
potential to exploit such vulnerabilities. These agents
can be individuals, groups, and even nations.

In addition, the increasing insertion of computers
and data networks in processes of management,
monitoring, automation and control of critical
infrastructures, such as power generation plants,
transportation systems, water collection, storage
and distribution stations, emergency services, etc.,
is inevitable. In this sense, the problem can
worsen considerably in cases related to this type of
infrastructure and, depending on the vulnerabilities
in them and the criticality of the attack, such damage
can be catastrophic. An example of this occurred
recently in Florida, United States, where a hacker
gained access to the water treatment system,

2 • RMCT

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

increasing the proportion of caustic soda and
exposing the local population to the risk of chemical
contamination [3]. Fortunately, a local employee
noticed what had happened and reversed the action
in a timely manner.

Thus, the detection of cyberattacks has
assumed a leading role in issues related to the
prevention and mitigation of threats in the field of
information technology.

2. Attack detection
Cyber attacks are offensive and malicious

maneuvers directed at information systems,
computer infrastructures, data networks and
personal computing equipment. They have
the purpose of exposing, changing, disabling,
destroying, stealing or obtaining unauthorized
access to data or computational resources [4]. Thus,
a cyber attack compromises at least one of the three
aspects of information security: confidentiality,
integrity or availability [5].

Attack detection is a task performed by an
Intrusion Detection System (IDS) – in this context,
the terms attack and intrusion will be used
interchangeably. This detection arises from
monitoring events that occur in a computer system
or data network. These events are then analyzed,
to find signs of possible incidents representing
violations or imminent threats of security policies
breach [6]. As illustrated in Figure 1, there are two
basic detection methods:
•	Signature-based detection: detection of traces,

called signatures, that uniquely identify a given
attack. These traces are stored in a database that
needs to be constantly updated as new types
of attacks emerge.

•	Anomaly-based detection: detection of patterns that
are outside those considered normal or acceptable.
This normal behavior can be defined by a data
network security expert or can be learned by some
Machine Learning (ML) technique.

Signature

Router

Anomaly

IDS

Internet

Firewall

Fig. 1 – Example of IDS use. Source: Adapted from [7].

The schematic in Figure 1 shows an IDS composed
of only one equipment at a specific location on the
network, typically between the firewall and the local
network to be protected. The advantage of this
schematic is that it considerably decreases the amount
of malicious data to be analyzed by IDS, since much of
the traffic considered inappropriate is barred in the
firewall. In addition, larger institutions usually have
a very extensive local network, often composed of
numerous subnets. In this case, the IDS deployment
is more complex, requiring the installation of other
components, such as:
•	Sensors: equipment connected at different points in

the network, to collect data, for example, IP packets;
•	Agents: software with functions similar to sensors,

but installed on hosts. In this way, agents monitor
computers and may collect data other than
network-specific data, for example, access to the
file system;

•	Management server: responsible for receiving,
processing and correlating the data sent by sensors
and agents. It is usually in this equipment that the
intrusion alert is generated;

•	Database server: responsible for storing the data
collected by agents and sensors;

•	Console: responsible for providing an interface for
IDS users and administrators.
Typically, the management and data exchanged

between these devices takes place on an independent

 RMCT • 3

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

network, which provides greater protection against
attacks directed at an IDS. This independent network
can ideally be a second physical network, providing
more security, but has a higher installation cost.
An alternative is to use a Virtual Local Area Network
(VLAN) that shares the same physical network,
or to traffic management data without the use of
VLAN, but with encryption. Both alternatives have
a lower installation cost, although they increase the
bandwidth consumption of the main data network,
and also reduce the safety of the equipment that
makes up the IDS.

Regardless of the size of the network and the
number of sensors and agents, in practice IDS
based on signature and anomaly are used together,
since one type complements the other. This is because
a signature-based IDS has the advantage of having
a low False Positive Rate (FPR), although it is inefficient
in detecting new types of attacks. This inefficiency
remains even when these new attacks are only minor
variations of those already catalogued. In the case
of an anomaly-based IDS, the opposite occurs: it has
the advantage of detecting new attacks, but with
a trend of higher FPR. This is because it is difficult to
precisely model the normal behavior of the network,
which can vary considerably depending on its size
and complexity. In addition, this normal behavior can
evolve over time, requiring revisions and updates of
the model that represents it.

In short, the IDS should ideally provide a
high coverage (also known as sensitivity, recall,
True Positive Rate (TPR), or detection rate), with a
low FPR. This characteristic is highly desirable,
being represented by the largest possible area under
the ROC (Receiver Operating Characteristic) curve.
This curve was developed by military radar operators,
showing the trade-off between the FPR and the recall
of the radar receiver, which explains its nomenclature.
Figure 2 characterizes the ROC curves of three
different classifiers. Different points belonging to
the same curve mean different decision thresholds
for the same classifier. Note that the best classifiers
can achieve greater recall with low FPR and that
this results in a greater area under the ROC curve.

In addition, the smallest area occurs when the classifier
is purely random. In this case, where the area is equal
to 0.5, the classifier always has the same probability of
detection, regardless of the sample to be classified.

1.0

0.8

0.6

0.0

0.2

0.4

ROC Curve

0.0 0.2 0.4 0.6 0.8 1.0

Perfect classifier

Best

Worst

Random cla
ssif

ier

R
ec

al
l

False Positive Rate
Fig. 2 – Examples of ROC curve. Source: Adapted from [8].

3. Machine Learning
ML is a field of Artificial Intelligence that is

strongly related to computational statistics, focusing
on prediction activity through computational
optimization methods [9], which enables the execution
of classification or regression tasks by the computer.
Classifying means determining to which class a given
sample belongs. As there is a finite number of classes,
these can be represented by discrete values. An example
would be spam or non-spam emails classification. In the
regression task, the sample is related to a continuous
value, such as prediction of real estate values.

Such samples are represented by their important
characteristics, also called attributes. In the case of
a spam rating, for example, each email is considered
a sample. A possible attribute may be the number of
times a given word, or word composition, appears
in the email. Examples of such words are: amazing,
satisfaction, now, bonus, win, offer, discount etc. In the
case of real estate, some examples of attributes are the
area, the number of rooms, the location and the age.

In this way, computational algorithms inductively
“learn” relationships between existing attributes in

4 • RMCT

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

a database [10]. The two main forms of learning
are: supervised and unsupervised. In the first case,
examples are provided, composed of attributes and
responses, so that the model learns the target function
in an inductive and approximate way. This function
represents the mapping between attributes and
responses (also known as target attribute or labels),
being usually complex and unknown [11]. Spam
email classification and property value prediction are
supervised tasks since target values (spam, non-spam,
and property price) are provided. In unsupervised
learning, there is no provision of labels to the
algorithm. In this case, the objective of the model
is to learn, by itself, some structure inherent to
the database [11]. For example, there are sample
grouping techniques based on similarity metrics,
known as clustering. Projection techniques, such as
Principal Component Analysis (PCA), also belong to
this category. Such techniques aim at grouping
and reducing data dimensionality, two pillars of
unsupervised learning [12].

For an effective application of ML, the database is
divided into three sets: training, validation, and testing.
In the training set, computational algorithms are
applied iteratively, in order to minimize a function
known as cost. This function indicates whether the
predicted values from the attributes are, on average,
close to those contained in the labels [11]. The lower the
value of the cost function, the greater this proximity
will be. A technique widely used in this minimization
is the gradient descent, which adjusts the model
parameters automatically, based on the gradient of
the cost function in relation to these parameters.

The test set is used to verify the performance
of the model in different examples of the training
set, indicating whether the relationship between
attributes and labels has been adequately learned.
In this ideal case, the model can generalize this
relationship well, being able to disregard possible
noises inherent in the training set.

When this ideal situation does not occur, it is
likely that the model has a high bias or overfitting.
Although both degrade performance in the test set,
their causes are quite distinct. High bias occurs when

the model is very simple, unable to approximate
the target function, regardless of any adjustment in
its parameters. This problem is verified when the
performance is low in both the training set and the
test set. To solve it, one must replace the model with
a more complex one, and it may also be necessary to
obtain a greater number of attributes. On the other
hand, overfitting occurs when the model is able to
approximate functions more complex than the target
function itself [13]. Consequently, the model ends up
generating a function that fits too much to the training
set, influenced by noise and imperfections, which do
not generalize the target function properly [10, 14].
This problem is verified when there is a considerably
higher performance in the training set compared to
the test set. Overfitting can be reduced by obtaining
a greater amount of training examples, or even by
regularization techniques.

In addition to the model parameters, which are
automatically adjusted by optimization algorithms,
there are others that need to be adjusted manually and
empirically, called hyperparameters. Some examples
of hyperparameters are: depth of the decision tree,
number of neurons and layers of the neural network,
learning rate, regularization rate, etc. The main
function of the validation set is to assist in the
adjustment of hyperparameters [15]. These receive
different values, which are used to train the model in
the training set and then validated in the validation
set, where the hyperparameters that obtained the
best performance are selected. This procedure can be
performed by means of a Grid Search.

One application of ML that has been gaining
ground in academia is the detection and classification
of cyberattacks. This is mainly due to the availability
of public databases, as presented in section 4.

4. Database with anomalous traffic
Databases are essential for ML, as they contain the

information to be learned inductively by the model.
However, there is a great lack of quality databases,
obtained by real traffic collection. One reason for
this is that companies may end up exposing some

 RMCT • 5

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

vulnerability or sensitive information by making data
available for research on the event of a suffered invasion.
Another reason is that it is difficult to obtain real traffic
labels. A hacker would probably not have the goodwill
to inform the victim of the class of attack employed.
In fact, he won’t even report an attack. An alternative is
to obtain the labels through a signature IDS; however,
unknown attacks (yet without signature) would be
labeled as normal traffic, negatively influencing the
learning of the algorithm.

Thus, it is no coincidence that practically all
public cyberattack databases were created through
simulation. An important factor to be considered in
these bases is the level of similarity in relation to a
real situation. Probably, a high-performing IDS on an
unrealistic basis may not work properly in a real job.

Another relevant aspect refers to the examples
contained in these bases. They can be provided in raw
data (in the form of IP packets), or in processed data (in the
form of traffic or network flow). In the first case, each IP
packet represents an example of the database. Some
attributes are common to all packages, such as header
size, total package size, protocol, source and destination
IP address. Other attributes are protocol-specific (TCP,
UDP, etc.) such as source and destination ports, which
do not exist in all protocols. These packages can be
captured and stored in pcap format, through specific
applications. Some popular applications are TCPDump,
Wireshark, Snort and Nmap [16].

In the form of network flow, these IP packets are
processed and formatted in such a way that each
example of the database consists of information that
defines a uni- or bi-directional sequence of packets
that share the following attributes: source IP address,
destination IP address, protocol, source port and
destination port [16]. TCP connections are an example
of bidirectional data flow. In addition, other statistical
data may be added to these attributes, such as,
for example, number of bytes emitted by the source,
number of bytes emitted by the destination, average
time between packets, packet rate, etc. Compared
to databases in the form of IP packets, network flow
databases have a smaller size because they disregard
information in the packet payload.

From 1998, intrusion databases began to be made
available, which enabled the introduction of ML
techniques in the field of cybersecurity. These bases
were generated by simulating malicious and benign
traffic. Some of them also included background
traffic, i.e., real and anonymized traffic, which are
not precisely known whether benign or malignant.
In some cases, malignant traffic classes are also
provided. The main public bases available are:
•	DARPA 1998/1999 [17]: Defense Advanced

Research Projects Agency DARPA 1998 and DARPA
1999, created by the Massachusetts Institute of
Technology (MIT), being widely used and discussed
in several articles. The first was obtained in a
simulation that lasted nine weeks. The first seven
weeks gave rise to the training set, and the last two,
to the test set. The attributes of this database are
provided in the form of raw data, i.e. IP packets.
One year later, a second base, entitled DARPA
1999, was available. It was generated by a five-week
simulation, the first three being training and the
last two for testing. This base has a significantly
greater amount of attack types compared to the
first. The attributes of this base are also provided
through IP packets.

•	KDD Cup 1999 [18]: used in a cyber attack
classification competition, this base has 41 network
flow-oriented attributes (NetFlow), derived from
DARPA 1998. The KDD Cup 1999 database, however,
has serious limitations [16] such as high sample
redundancy and inaccuracies derived from packet
loss during its creation, caused by excessive data
traffic. In addition, the vast majority of examples,
both in the training set and in the test set, were easy
to classify, not requiring very complex models [19].

•	NSL-KDD [20]: it was built in 2009 by a careful
sampling of the KDD 1999 base, where redundancies
were eliminated and the number of easy examples
reduced. Thus, high accuracy was no longer
possible to be obtained with overly simple models.
The main simulated attacks on this base are DoS
(Denial of Service), unauthorized administrator
access (U2R – User to Root), access to a local network
host by an unauthorized remote machine (R2L –

6 • RMCT

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

Remote to Local), and scanning of network resource
information (Probe or Scan).

•	CTU-13 [21]: was established in 2011 by the CTU
University, Czech Republic. The term 13 comes from
this base having thirteen different scenarios where
Botnet attacks occur. Such scenarios vary greatly
in difficulty level of attack detection. Data from
this database is provided in raw data (IP packets)
and processed data (NetFlow standard, WebLogs
and others). Delplace, Hermoso and Anandita [22]
used this basis to verify the performance of various
ML models, in addition to analyzing the relative
importance of each attribute.

•	CIC-IDS [23]: these are public databases provided
by the Canadian Institute of Cybersecurity, located
at the University of New Brunswick. There are
three: one launched in 2012, one in 2017 and
another, more recent, in 2018. The latter two
contain benign traffic and more current attacks.
Data is available in raw form (pcap) and in the form
of network flow, through the processing of the raw
data by a tool of this Institute, called CICFlowMeter.
This tool characterizes the network flow through
six attributes: time stamp, source and destination IP
address, source and destination port, and protocol.
An interesting feature on this database was the
method to generate benign traffic, which mimics
the behavior of human interactions, therefore being
more similar to actual traffic.

•	AWID [24]: it is a project of the University of Aegean,
located in Greece, where two public databases
(AWID2 and AWID3) extracted from Wi-Fi traffic are
made available. They make it possible to develop and
analyze IDSs specific to the wireless environment,
which has vulnerabilities different from cabled.
AWID2, made available in 2015, is considered the
first public base of wireless networks [25], and has
three categories of attack: injection, denial of
service and personification, in addition to normal
traffic. These attacks are designed to exploit
existing vulnerabilities in the authentication
environment, which uses WEP (Wired Equivalent
Protection), WPA, and WPA2 (Wi-Fi Protected Access).
The AWID3, launched in 2021, used a more modern

authentication environment, called the Extensible
Authentication Protocol (EAP), enabling the study of
attacks designed to exploit vulnerabilities in this
new environment. Multilayer attacks have also been
included, which exploit vulnerabilities of the link
layer (802.11) and higher layers.

•	UNSW-NB15 [26]: this is a public cyberattack
base launched in 2015, available in pcap, BRO,
Argus, and csv formats. Examples of this base were
created through a tool called IXIA Perfect Storm,
which belongs to the Australian Center for Cyber
Security (ACCS). This base has nine attack types,
available in the form of 49 attributes, in addition to
the class label. It is available in the full version with
a total of 2,540,044 examples and in the reduced
version, with the training and test sets having
175,341 and 82,332 examples, respectively.

•	IoT-23 [27]: this is a base that contains traffic captured
from 2018 to 2019, and was published in January
2020 at the University of CTU, Czech Republic,
being funded by the antivirus company Avast.
The term 23 comes from this base having 23 different
scenarios where attacks related to IoT (Internet of
Things) equipment occur. This is a labeled database,
made available in the form of pcap files and in the
form of data traffic, obtained through the Zeek
software. It has eight types of attacks, in addition to
benign traffic, which was generated by three known
uninfected IoT equipment.

•	USB-IDS-1 [28]: this is a database made available in
2021 by the University of Sannio, Benevento (USB),
Italy, consisting of a variety of DoS attacks (Hulk,
TCPFlood, Slowloris and Slowhttptest) performed
against a web server. It can be obtained through raw
data (pcap format) or data traffic (csv format), the latter
generated by the same tool used in the CIC-IDS:
CICFlowMeter databases. For this reason, the existing
examples in USB-IDS-1 have the same attributes as
those databases, allowing to test the ML models ability
to generalize on different bases. An innovative fact in
the USB-IDS-1 base was the inclusion of defensive
tools and configurations in the web server, which is
very common in real applications. Such tools alter
the traffic profile and may decrease the effectiveness

 RMCT • 7

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

of algorithms trained in other environments.
In addition, the authors showed that these tools do
not guarantee a perfect mitigation of attacks, which
reinforces the need to use IDS.

5. Explainability
Recently, methods that use deep learning, such as

convolutional and recurrent networks, have obtained
significant accuracy in image classification tasks and
natural language processing. This evolution was used
in the area of intrusion detection, allowing a high
accuracy in the detection of cyberattacks, with reduced
FPR [29]. On the other hand, such models are not
very transparent, which has increased the importance
of the development of methods that reasonably
explain the reasons behind decisions taken by these
models. However, most articles in this field are still
exclusively concerned with obtaining high accuracy,
high detection rates and low FPRs, without considering
the understanding of the mechanisms that led
the model to perform a certain classification. With the
emergence of public databases, there was a tendency
to a certain competition among authors of articles in
this area. Finding phrases like “Our method obtained
a higher accuracy, with a lower false positive rate” is very
common. Also very common is to display, in these
articles, a table listing the performance of several other
methods, extracted from other works, usually with
lower performance than proposed by them.

This search for high performance resulted in
a considerable increase in the complexity of the models,
which made it virtually impossible to understand the
mechanism behind the decision of these algorithms
in intrusion detection tasks. This does not mean
there is no knowledge about how the algorithm
performs the classification. For example, in Multi
Layer Perceptron (MLP) networks, also known as
neural networks, however deep and complex they
may be, algorithm decisions continue to be generated
by an intricate weighted combination of layer-by-layer
functions. The term “weighted” refers to the weights
that multiply the attributes and values of each neuron.
These weights are adjusted automatically, usually

by the descending gradient technique or some
variation of it, to minimize the difference between the
predicted class and the label to which each example
of the database actually belongs. The problem is that
this alone does not clarify which attributes and which
relationships between these attributes led to a given
classification. For the algorithm, what matters is to
minimize the error, regardless of any rationality in
relation to the characteristics of the examples.

This lack of transparency in complex models causes
distrust, especially in non-obvious classifications,
which may contradict the opinion of a human. In this
case, if the model’s decision does not inform its
reasons, it is difficult to know if there was an error
or if the model was able to perceive some important
detail that escaped human perception. This problem
is more relevant in applications with low fault
tolerance, as occurs in the detection of an intrusion.
In this case, there is a low tolerance for false negatives,
as no timely action will be taken to stop an undetected
attack whose presence will only be noticed for its
consequences. An “opaque” model does not allow the
analyst to know when and why certain attacks are not
detected. The application in network intrusion is quite
distinct from, for example, recommendation systems.
In this case, it is not so important to know why the
model recommends a particular product to a user,
as long as the algorithm has a high accuracy. These
cases in which the model errs, which are a minority,
do not bring serious consequences, only causing the
user to disregard such recommendations.

In addition, understanding the right decisions
made by complex models can help the expert discover
non-trivial hitherto unknown relationships between
attributes and cyberattacks. On the other hand,
the understanding of erroneous decisions enables
model improvement. Finally, attackers can make
specific changes to their attacks to evade detection.
Thus, knowledge of the classification mechanism
allows specialists to make adaptations that strengthen
the model against such vulnerability.

Consequently, new studies and new tools have
emerged to open this black box and provide a more
rational understanding of the most relevant factors in

8 • RMCT

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

the decision-making of these models. These studies
and tools provide what has been conventionally called
the explainability of the model. Thus, the most recent
studies dealing with intrusion detection using ML
began to address not only the performance of the model,
but also its explainability, allowing the analyst to verify
the reasonableness of the relationships between the
attributes abstracted by the model in the classification
activity. Figure 3 illustrates this procedure.

Database
Machine

Learning model
Explainable

interface

Debugging and
Diagnostics

Why this decision?
Why not any other?
Does it make any sense?
The model can be trusted?

Fig. 3 – Explainable interface. Source: Adapted from [30].

6. Studies on IDS
Due to the importance of this subject, several

review articles on intrusion detection using ML have
been published. Some, with an outstanding number
of citations [16, 31], synthesize most of the review
objectives, in addition to offering a relevant theoretical
framework and contributing to improvements in the
dissemination and analysis of results. Additionally,
Buczak and Guven [16] highlighted the variety of ML
techniques available for application in IDS, showing
how complex it is to establish which of them would be
the most appropriate, considering the type of attack the
system should detect. Another important contribution,
presented by Khraisat et al. [31], is the study of
evasion techniques used by attackers, one of the main
challenges in intrusion detection research. Although
such aspects are essential, these review articles do not
include works of analysis through explainability, which
can only be found in review articles from different areas
of cybernetics. A second gap refers to the inclusion of
studies that address the potential that IDS models have
in generating false positives in real applications. Thus,

this research seeks to complement the existing review
articles through the inclusion and analysis of these two
topics. Thus, subsection 6.1 lists the works that use ML,
favoring the performance of the algorithm; however,
they do not present a critical analysis of other relevant
factors, such as, for example, the impacts related to
FPR, or even the explainability of the model. These
factors were analyzed by the studies in subsections 6.2
and 6.3, respectively. Finally, subsection 6.4 presents
a comparison between these studies.

6.1. Studies with a focus on performance

Buczak and Guven [16] gathered works that
seek to develop IDS using signature and anomaly
detection. The latter has aroused a greater interest
of the scientific community for employing classical
techniques of ML and data mining. Studies that used
public databases and presented some performance
information are also of greater interest. One should
consider that, in DARPA and derivative bases (with the
exception of NSL-KDD), it is common to obtain results
with very high performance, outside the context of real
applications. This is due to a large number of repeated
records, as well as a predominance of easily classified
attacks [19]. On the other hand, Khraisat et al. [31]
conducted a more current research in the area of
intrusion detection, including studies that used more
recent bases, especially the CIC-IDS 2017. The most
relevant works in these studies are shown in Table 1,
and are briefly described in subsection 6.1.

Tab. 1 – Studies cited in research articles.

Research Articles Relevant Studies

Buczak and Guven [16]

Fan et al. [32]
Hu, Liao and Vemuri [33]
Bivens et al. [34]
Kruegel et al. [35]
Shon and Moon [36]
Tajbakhsh, Rahmati and Mirzaei [37]
Amor, Benferhat and Elouedi [38]

Khraisat et al. [31]

Chen, Hsu and Shen [39]
Adebowale, Idowu and Amarachi [40]
Thaseen and Kumar [41]
Ustebay, Turgut and Aydin [42]

Source: Prepared by the authors.

Fan et al. [32] used a rule-making inductive learning
technique called RIPPER (Repeated Incremental

 RMCT • 9

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

Pruning to Produce Error Reduction). The authors
developed an artificial anomaly generator (attacks)
to improve the generalization ability of the classifier.
The 1998 DARPA database was used, obtaining a
recall of 94%, with a FPR of 2%. Still on the same
basis, Hu, Liao and Vemuri [33] used a variation of
the support vector machines, called RSVM (Robust
Support Vector Machine). This technique obtains an
average of discriminant hyperplanes, smoothing
the classification frontier, in addition to obtaining
the regularization parameter and the classifier
automatically. Good performance was obtained even
in the presence of noise (although some training base
labels are incorrect): 75% recall without false alarms,
and 100% recall with FRP of 3%.

Bivens et al. [34] used SOM (Self-Organizing Map)
to learn the normal behavior of traffic, together
with MLP, to classify intrusions on the DARPA 1999
basis. The authors sought to classify attacks into
different categories and reported having obtained
100% of TNR (True Negative Rate) and FPR of 76%.
This information is somewhat inconsistent, since a
TNR of 100% implies a FPR equal to zero. In fact,
what the authors call FPR is the proportion of attacks
misclassified in another type of attack. On the same
basis, Kruegel et al. [35] used Bayesian networks,
obtaining a FPR slightly greater than 0.2% and a recall
of 100%. On the other hand, Shon and Moon [36]
used an anomaly detection technique called Enhanced
SVM to detect attacks in the 1999 DARPA database.
This technique was derived from One-Class SVM and
Soft-Margin SVM. For a more realistic application,
the base imbalance was increased, consisting of 1% to
1.5% of attacks and 98.5% to 99% of normal traffic.
A false negative rate (FNR) of 27.27% was obtained,
with a FPR of 10.2%. Although the recall was not
directly provided, it is possible to derive it from the
FNR, being, therefore, 72.73%.

Tajbakhsh, Rahmati, and Mirzaei [37] used
Fuzzy Association Rule Mining to find patterns in
the relationships of the 1999 KDD base attributes.
The article highlights some benefits of the technique,
such as the creation of humanly interpretable rules;
however, it obtained a FPR of 13% to a recall of

100%. Still on the same basis, Amor, Benferhat and
Elouedi [38] used the Naive Bayes (NB) algorithm,
reporting a recall of 89% and a TNR of 98%. Although
FPR has not been reported, it can be inferred, based
on TNR, that it is 2%.

Chen, Hsu and Shen [39] extracted system call
data from the 1998 DARPA database, coding it with
the tf-idf (term frequency – inverse document frequency)
method, to then train an SVM classifier. A 100% recall
was obtained with FPR of 8.53%.

Adebowale, Idowu and Amarachi [40] used SVM,
MLP, NB and Decision Trees (DT) for the detection of
intrusion in the NSL-KDD base, obtaining the accuracies
of 97.3%, 95.8%, 89.6% and 99.6%, respectively.
The author used Weka 3.6.7 (Waikato Environment for
Knowledge Analysis), a software developed in Java by the
University of Waikato, New Zealand, which incorporates
various ML techniques. It was not informed if the
hyperparameters of the models were the default values,
or if there was any adjustment to obtain such accuracy.
These were raised via 10-fold cross-validation on the
“full NSL-KDD” base. Although the NSL-KDD base
is provided in three sets, 20% training (only twenty
percent of the samples in the training set), training
and testing, the author does not clarify what the
“full NSL-KDD” is. One possibility, therefore, is that
he joined the training and testing parts on a single
basis and applied cross-validation, only to train and
evaluate the models performance (and not to adjust
hyperparameters). Accuracies obtained were well
above those raised by Tavallaee et al. [19], who were the
creators of the NSL-KDD base. Probably, the reason for
this was that, in this last article, the training base used
was 20% of the training, and the accuracy was raised
in the test set. Adebowale, Idowu and Amarachi [40]
also provided the detection and FPR indexes: the SVM
obtained a recall of 95.9% at an FPR of 1.4%; the MLP,
NB and DT obtained, respectively, a recall of 95.9% at
an FPR of 4.4%, a recall of 87.7% at an FPR of 8.8%,
and a recall of 99.6% at an FPR of 0.4%.

Thaseen and Kumar [41] used the NSL-KDD base
to test all tree-based classifiers contained in the Weka
software, namely: ADTree, C4.5, J48graft, LADTree,
NBTree, RandomTree, RandomForest and REPTree.

10 • RMCT

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

A preprocessing was performed in the database,
where the continuous attributes were discretized
by a supervised attribute filtering technique called
Discretize. In addition, there was a reduction from
41 to only 8 attributes, obtained via CFS (Correlation
Feature Selection) analysis. This is a method of selecting
attributes that favors those with higher correlation
with the output variable and, at the same time,
lower correlation with the other attributes. Although
there was no adjustment of hyperparameters,
overall the classifiers obtained high accuracy in the
test set. NBTree was the one that obtained the best
performance with a recall of 97.8% to an FPR of 4.8%.

Ustebay, Turgut and Aydin [42] obtained a
considerable reduction in the attributes of CIC-IDS
2017 database examples, using the recursive elimination
of attributes with the Random Forest (RF) algorithm.
Thus, the total number of attributes was reduced from
81 to only four, selected according to their importance.
The authors raised a relevant point by stating that the
attributes Flow_ID, Source_IP, Destination_IP, Timestamp
and External_IP were not used in the training, that is,
none of them were present in the four selected.
This is an indication that the classifier may perform
reasonably closely when applied to an actual network,
as such attributes are specific to the CIC-IDS 2017
base and should not be considered in the classification
task. However, there was no critical analysis of how
general the meaning of each of the four selected
attributes is, i.e., whether they remain the same in real
networks. After the selection of attributes, the base was
partitioned into 80% for training and 20% for testing.
Then, a three-layer MLP with activation functions of
the ReLu type was used, with the exception of the
output layer, whose activation function was Adaptive
Moment Estimation. By analyzing the ROC curve, it is
possible to infer an 18% FPR to a 100% recall.

There are also studies that used recurrent neural
networks in the intrusion detection task. Le, Kim and
Kim [43] used the sequence prediction algorithm LSTM
(Long Short Term Memory) to perform the classification of
attacks in DoS, Scan, U2R and R2L. The database used
was KDD 1999, and the result obtained was a recall of

98.95%, with 9.98% FPR. However, the authors do not
detail the application method of the algorithm.

Xu et al. [44] performed a similar study to that
of Le, Kim and Kim [43], but replacing the LSTM
algorithm with a Recurrent Neural Network of
sequence prediction called GRU (Gated Recurrent
Units). The authors suggested that GRU is superior
to LSTM to classify attacks, and exemplified such
comparison through an isolated application of both
algorithms in the KDD 1999 and NSL-KDD databases.
In both bases, GRU was actually superior to LSTM,
although there is no theoretical support to generalize
such superiority in other applications. In addition,
such algorithms were used in conjunction with a MLP
Neural Network. The best results, obtained with the
GRU, were a recall of 99.42%, with a FPR of 0.05%,
for the KDD 1999 base. In the case of the NSL-KDD
database, the recall was 99.31%, with a FPR of 0.84%.
Although Le, Kim and Kim [43] have been cited in
the bibliographic references of Xu et al. [44], at no
time do the authors emphasize the fact they obtained
an extremely reduced FPR compared to the first
study. In addition, again, there is no detailing of
the methodology for algorithm application, where the
sequences of attributes used could be presented,
since it is a sequential prediction algorithm.

Papamartzivanos [45] developed a rule-inducing
methodology based on a combination of genetic
algorithms (GA) and decision trees. This method,
called Dendron, aims to evolve a population of
decision trees, resulting in a set of rules for detection
and classification of attacks. According to the author,
this methodology allows the development of a
signature-based IDS with a balanced performance,
i.e., with similar accuracy in all classes (including
the rarest) in which network traffic is classified.
Another advantage of this method is that, as it used
decision trees, the rules generated for classification
are humanly intelligible, facilitating decision
making by experts in relation to countermeasures.
The model was tested in the KDD 1999, NSL-KDD
and UNSW-NB15 databases, obtaining, respectively,
the following performance metrics: recall of 98.24%,

 RMCT • 11

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

with an FPR of 0.75%; recall of 95.97%, with an FPR
of 1.08%; and recall of 63.76%, with an FPR of 2.61%.

Still in this article, Papamartzivanos [45] based
the study on a methodology developed by Raina et al.
[46] called STL (Self-Taught Learning), with the
objective of making IDS self-adaptive, allowing it
to maintain performance even in the occurrence
of significant changes in the environment where it
operates. These changes can have different causes,
such as the insertion and removal of network assets,
including IoT equipment, software updates and the
emergence of new attacks. Therefore, unlike common
(static) signature IDS, there is no need for manual
updates to adapt to these changes. To demonstrate
this capability, the author trained an IDS on an
initial base containing 10% of normal traffic from
the 1999 KDD base and a small portion of attacks
from each class of the same base. The algorithm
used was a DSAN network (Deep Sparse Autoencoder
Network) in conjunction with Softmax regression.
The remainder of the 1999 KDD database was
used to generate 100 different environments
through random sampling. Each environment
could contain, or not contain, classes or instances
belonging to the initial base; therefore, depending
on these differences, a given environment could be
little or very distinct from the initial base. Thus,
starting from the trained IDS, performance data
were obtained in these varied environments in two
ways: the first, keeping the IDS static, i.e., without
changing it after the initial training; and the second,
using STL to test the ability of the classifier to adapt
to changes. The static IDS obtained, on average
(considering 100 different environments), a recall
of 38.54%, well below 60.34%, which was obtained
by the self-adaptive IDS. A discordant aspect in this
study is that the experiment was conducted in an
ML-based IDS, using DSAN and Softmax, and the
author argues that this technique allows for making
a signature-based IDS self-adaptive.

Stefanova [47] developed an Intrusion Detection and
Prevention Systems (IDPS), which has two layers: the first,
responsible for performing the detection through ML,
and the second, responsible for actively preventing the

detected attack, through Reinforcement Learning.
In this case, the author applies an approximation of
Q-learning in the context of Game Theory, where the
attacker and the defender (of the data network)
participate in the same game whose solution is an
optimal balance point, from the point of view of
defense. The database used was NSL-KDD. Regarding
the first layer, there was a selection of attributes using
information gain, reducing them from 41 to 30.
The classification was performed by a RF, obtaining
an FPR of approximately 0.16% and a recall of 99.9%.
These values were obtained by inspection of the ROC
curve present in the study.

6.2. Studies focused on reducing FPR

The following studies addressed the problem
of FPR, which is one of the main obstacles in the
implementation of an IDS in real networks, especially
in those with high traffic density.

Subba, Biswas and Karmakar [48] proposed
a method of reducing the FPR in signature IDS,
whose main idea is to scan all assets belonging to
the local network to be protected and to list all
existing vulnerabilities, creating a “vulnerability
profile”. Thus, all alarms related to attacks exploiting
vulnerabilities that do not exist in this profile are
discarded, considerably reducing the FPR, without
impacting the recall. The experiment used the
Snort IDS, whose signature database was in the
VRT-certified (Vulnerability Research Team) Snort V2.8
version, in the default configuration, with all
signatures enabled. Initially, performance data of the
IDS Snort were collected in the DARPA 1999 database
and, after that, the proposed technique was applied
to minimize FPR. The author did not make clear
how much FPR was minimized. On the other hand,
he reported that, in the case of critical vulnerabilities,
the accuracy of the detector increased from 83.24% to
97.85%, without changing the recall, which remained
at 37.47%. In the case of non-critical vulnerabilities,
the accuracy increased from 71.31% to 95.56%,
with a small degradation in recall (from 35.67% to
32.43%). Thus, since the accuracy improved without

12 • RMCT

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

significantly changing the recall, one may say there
was a decrease in the FPR.

Another article that also used Snort to study the
false positive problem was Tjhai et al. [49]. In this
case, IDS has been installed to monitor inbound and
outbound traffic on the University of Plymouth (UK)
web server. One of the problems with this approach is
that only events that generated alarms were analyzed.
This means there was no knowledge about the number
of true or false negatives. Thus, it was agreed to call
the True Positive Rate (TPR) the proportion of true
alarms in relation to the total amount of alarms. In fact,
this ratio denotes the precision of the IDS, not the TPR.
Similarly, the proportion of false alarms in relation to the
total number of alarms was conventionally called FPR,
which, in fact, is the complement of precision. Despite
this, the data presented were sufficient to show the
extent of the problem of false positives, since these were
considerably more numerous in relation to true alarms,
in this case, in an approximate proportion of 24:1.
Another aspect presented was a third category of alarms
(in addition to true and false positive), called irrelevant
positive, which, in this article (and in Subba, Biswas and
Karmakar [48]), was included in the category of false
positive. An irrelevant positive is an attack known to be
unsuccessful, as it exploits vulnerabilities that do not exist
in the network in question. For example, an attack that
exploits a particular Windows OS specific vulnerability
is an irrelevant positive if all machines connected to
the network only run Linux OS. In summary, the vast
majority of false alarms were noticed to be generated
by three types of signatures. Thus, through the analysis
of an expert, adjustments were made to the rules
related to these signatures, resulting in a decrease in
the proportion of false positives (in relation to true
positives) from 95.5% to 86.8%.

Zohrevand and Glässer [50] analyzed several
studies aimed at decreasing FPR of anomaly-based
IDSs to acceptable levels. According to the authors,
considerable attention has been given only to
obtaining a model trained in anomaly detection,
neglecting aspects related to the analysis of decisions
made by these models, especially analyses aimed at
mitigating false alarms, such as the “anomaly score”,

which measures the level of difference regarding
normal events, and adjustment of the decision
threshold. Thus, different ways of computing
the anomaly score were presented, addressing
probabilities, correlations and similarities between
anomalies. Unfortunately, the survey did not present
numerical data for comparison purposes.

6.3. Studies with a focus on model explainability

In this section, studies related to the explainability
of algorithms applied in cyberattack detection will be
presented. Usually, in this case, there are two most
common approaches: a broad analysis of the attributes,
where the most important ones are shown in general,
and a more specific analysis, where, for a given
classification (or group of classifications), the attributes
that most influenced it are verified. In addition,
performance data is no longer as relevant as in the
studies cited in subsection 6.1. Thus, studies on
explainability are more focused on the interpretation of
attributes and how reasonable is the importance given
to them by the algorithm in a given classification task.
Marino, Wickramasinghe and Manic [30] analyzed
examples misclassified by the model through a method
called Adversarial Approach. The idea of this technique
is to verify the smallest possible change in attributes
necessary to correct a wrong classification. This method
works for any type of model (linear, neural network,
SVM, etc.) as long as the loss function – typically the
cross-entropy for the classification case – has a gradient
defined in relation to the input attributes. One should
note that a hacker can use this same method to do the
opposite, i.e., to determine which is the smallest change
in the attributes of an attack (which has been detected)
necessary for the model to consider it as legitimate
traffic. However, there are correlations between
attack attributes that impose restrictions capable of
preventing changes independently. Thus, the smallest
theoretical change can result in an unfeasible attack,
since the technique of Adversarial Approach disregards
interdependence relations between attributes.

Figure 4 elucidates an Adversary Approach
application referring to a particular case of the

 RMCT • 13

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

NSL-KDD database. These are the normal (legitimate)
traffic samples wrongly classified as DoS by an already
trained neural network model, with an accuracy of
95.5%. On the vertical axis, there are the attributes,
and on the horizontal axis, the minimum values on
average that should be subtracted from these attributes
so the model would correctly classify these samples.
This means that, by making such minimal changes in
attributes, samples erroneously classified as DoS would
be classified correctly in normal traffic. As a result,
one can explain the wrong classification. One may see
that a relatively high number of connections occurred
for the same host (count) and for the same destination
address (dst_host_count), and these connections had
a short duration (duration). In addition, there were
few operations performed as root on these connections
(num_root), as well as a low percentage of samples that
were able to log in successfully (logged_in, is_guest_login).
These characteristics are common in denial-of-service
attacks, hence the reason for misclassification. It would
be up to the analyst to verify if there was a label error
at the base, or if there was only a coincidence, or even
whether there is any logical reason for records labeled
as normal to have such attributes.

duration
count

dst_host_count
num_root
logged_in

is_guest_login
dst_host_diff_srv_rate

diff_srv_rate
dst_host_same_src_port_rate

srv_count
dst_host_srv_count
dsrt_diff_host_rate

hot

-0,5 0,0 0,5
Fig. 4 – Normal samples misclassified as DoS. Source: [30].

Reyes et al. [51] used ML in the detection of
intrusion in Wi-Fi networks, constant in the AWID2
base. Detection occurs in two stages: the first,
through the RF, classifying the events in normal,
flood, and personification/injection; and the second
stage separates the personification of the injection,

via NB. This model was conceived as a consequence of
a previous study, where the authors, when classifying
the attacks in a single stage, realized that many samples
of the personification class were classified as injection
and vice versa. Considering only the task of detecting
the first stage, that is, classifying it as normal or attack,
the proposed model obtained an accuracy of 99.41%,
a recall of 94.1% and an FPR of 0.13%. Additionally,
the authors dedicated a section to the analysis of
attributes using the SHAP library (SHapley Additive
exPlanations) [52], which offers a variety of tools for
analysis of global and local explainability of the model,
including graphically. However, this study does not
present a domain explanation, i.e., the meaning of
each attribute (or, at least, the main ones) and whether
or not the behavior of the model is coherent, clarified
by explainability techniques. Despite this, the authors
limited themselves to citing which attributes positively
or negatively impact the classification of a given label.
However, a more in-depth analysis of the coherence
of these impacts would be necessary, which is only
possible with an understanding of the meaning of
the attributes involved.

Wang et al. [53] also used SHAP to explain the
decisions of an IDS, in addition to claiming pioneering
in the application of this technique of explainability
in intrusion detection. The NSL-KDD database was
used to train two distinct neural network models:
one-against-all and multiclass, which obtained,
respectively: 80.6% accuracy, 80.6% recall and 19.4%
FPR; 80.3% accuracy, 80.3% recall and 19.7% FPR.
In these models, a local explainability analysis was
made regarding DoS attacks of the Neptune type,
which attempts to saturate a server by sending a high
number of SYN packets on all ports. These attacks
therefore have a high rate of connections with SYN
error and, using local SHAP analysis, it was found
the one-against-all and multiclass models classified
Neptune attacks in DoS with, on average, 93% and
89% certainty, respectively. However, the attributes
that guided this classification were quite different.
In fact, the one-against-all model used more
reasonable attributes and directly related to Neptune.
Such attributes indicated high SYN connection error

14 • RMCT

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

rates, demonstrating that this feature was primarily
responsible for the classification. The multiclass
model did not predominantly use attributes related
to this aspect of SYN error. Therefore, the authors
concluded that the multiclass model does not provide
consistent reasons for an expert’s confidence in the
results. On the other hand, there was no critical
analysis of the attributes that guided the classification
made by the multiclass model, even though they were
not directly related to Neptune. A global analysis of
the importance of attributes using SHAP was also
presented. Figure 5 shows 20 of the 41 most important
attributes for DoS classification for the one-against-all
model case. Each line in the figure contains an attribute
and all examples of the test set in the form of points,
whose color varies from blue to red, representing the
lowest and highest values of the attribute, respectively.
The location of the points on the horizontal axis
denotes how much the respective attribute contributed
for or against the classification in DoS.

wrong_fragment
service_ecr_i

dst_host_serror_rate
srv_serror_rate

root_shell
serror_rate

protocol_type_icmp
srv_count

hot
flag_S0

dst_host_diff_srv_rate

count
dst_host_same_src_port_rate

-0.1 0.0 0.50.1 0.2 0.3 0.4
SHAP value (impact on model output)

Low

High

same_srv_rate
dst_host_srv_diff_host_rate

protocol_type_udp

logged_in
dst_host_count

dst_host_rerror_rate
dst_host_diff_srv_rate

Fig. 5 – 20 most relevant attributes in the DoS classification by the
one-vs-all model. Source: [53].

Table 2 lists the four most relevant attributes
of Figure 5 with DoS-type attacks, demonstrating
that, in fact, such attributes are quite pertinent to an
effective DoS classification.

Tab. 2 – DoS attack types.

Type Description Attribute

Land This attack locks SunOS 4.1 by sending a masked TCP SYN packet, with the same source address as the destination.
srv_serror_rate
dst_host_serror_rateNeptune

Also known as SYN flood or half open attack, it floods web servers with masked TCP SYN packets, depleting memory.
Consequently, new connections will be rejected until expiration of the time of these connections opened by
the masked packages.

PoD Known as “Ping of Death,” this attack sends fragmented IP packets so that when they are rebuilt on the target host, they result
in an IP packet over 65,535 bytes in size, which is the maximum allowed. This causes old operating systems to crash.

wrong_fragment
Teardrop This attack sends fragmented IP packets that are impossible to rebuild on the target host, because there are overlaps

between the fragments, causing some operating systems to crash.

Smurf
This attack sends ICMP packets of the Echo Request type, known as ping, to all hosts present on the victim’s network,
via broadcast. As the source address field of these packets was masked with the IP address of the victim, it receives an
excessive amount of Echo Reply packets, coming in response from all hosts contained in the broadcast address.

service_ecr_i

Source: Adapted from [53].

A slightly different approach was presented
in Mahdavifar and Ghorbani [54]. In this article,
the authors initially trained a DNN neural network to
detect cyberattacks and later derived from this network
an expert model, called DeNNeS (Deep Embedded Neural
Network Expert System). Expert models are defined as
a computer program that performs a task typically
performed by an expert person through if-then rules
[55]. In this case, these rules were extracted from the
DNN model, which is not interpretable, to compose the
knowledge base of an expert system, which is interpretable.

For a formal definition of these rules, consider
T: {X, y} → {(x (1), y (1)), (x (2), y (2)), …, (x (m), y (m))} a database
with m examples (x(i); y(i)) where x(i) represents a vector of
attributes of example i, and y(i) the label of the associated
class. x(i) has n attributes xk

(i), as follows: x(i) = {x1
(i), x2

(i),
…, xn

(i)}; and y(i) is an integer: y(i) ∈ ℤ.
Thus, a classification rule ri, with respect to (x(i);y(i)),

is defined as ri: Pi → Qi, where the antecedent of the rule
Pi is a combination of l < n attribute values {k1, k2, …, k1}:

P x x xi k
i

k
i

k
i
l

� � � �{ ... },() () ()
1 2

 RMCT • 15

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

And the consequence of the rule Qi = {y(i)} is
the class label.

Thus, Mahdavifar and Ghorbani [54] developed
extensions of the MIJ (MACIE’s Inference Justification)
algorithm [55], in order to extract these rules from the
DNN model. Different rules applied to the same sample
may result in different classifications. Thus, to carry out
the final classification based on rules, a voting system
was established, considering all the rules applicable to
the sample in question. In addition, the voting weight of
each rule varies according to the strength of the rule (ηri),
measured by the product of two factors: confidence (Cfri)
and coverage (Crri), something somewhat analogous
to the performance indicators precision and recall
of classifier models. The first factor is equal to the
proportion of examples that obey the rule completely
in relation to all that obey the antecedent of the rule.
The second is equal to the proportion of examples that
obey the rule completely in relation to all that obey the
consequent of the rule. Formally, we have:

r r ri i i
Cf Cr ,

Where Cf
x y T P x eQ y

x y T Pr

i i
i

i i

i i
i

i
�

� � �
� �

|{(,) | { }}|
|{(,) |

() () () ()

() () xx i()}|

And Cr
x y T P x eQ y

x y T Qr

i i
i

i
i

i

i i
i

i

|{(,) | { }}|
|{(,) |

() () () ()

() () { }}|
.()y i

Two databases were used to apply this technique:
Phishing Websites, from the University of California
Irvine (UCI), and an Android malware database,
collected through the Virustotal and Contagio Security
Blog websites. On these bases, DNN, DeNNeS and
classical ML algorithms were applied. DeNNeS obtained
the second best performance, being very close to the
DNN model, which obtained the best. In the Phishing
Websites database, DeNNeS obtained an accuracy of
97.5% and an FPR of 1.8%, surpassing another rule
extraction technique known as JRip, in addition to
also surpassing other ML techniques (RF, SVM, KNN
and NB). In the malware base, DeNNeS achieved
an accuracy of 95.8% and an FPR of 8%; likewise,
it surpassed JRip and other ML techniques.

6.4. Comparison between related studies

Table 3 presents the performance data of the
studies contained in subsection 6.1. As some studies
in subsection 6.3 also provided performance data
[51, 53, 54], they were included at the end of this
table. The purpose of this comparison of results
is to show that, in general, FPR is not negligible,
and may become an important problem in cases of
high and unbalanced traffic in favor of legitimate
events. In addition, there is a very large variation of
these values, including in studies that used the same
database. As practically all the articles addressed do
not provide in detail the methodology and all the data
necessary for the replication of the experiment, there is
no way to guarantee a completely fair comparison.

Tab. 3 – Performance obtained in intrusion detection articles
using ML.

Article Database Technique Recall
(%)

FPR
(%)

Accu-
racy (%)

Fan et al. [32] DARPA
1998 RIPPER 94 2 -

Hu, Liao and Vemu-
ri [33]

DARPA
1998 RSVM 100 3 -

Bivens et al.[34] DARPA
1999

SOM/
MLP - 76 -

Kruegel et al. [35] DARPA
1999

Bayesian
Networks 100 0.2 -

Shon and Moon [36] DARPA
1999

Improved
SVM 72.73 10.2 -

Tajbakhsh, Rahmati
and Mirzaei [37]

KDD
1999

Fuzzy
Rules 100 13 -

Amor, Benferhat
and Elouedi [38]

KDD
1999 NB 89 2 -

Chen, Hsu and
Shen [39]

DARPA
1998 SVM 100 8.53 -

Adebowale, Idowu
and Amarachi [40] NSL-KDD

SVM 95.9 1.4 97.3
MLP 95.9 4.4 95.8
NB 87.7 8.8 89.6
DT 99.6 0.4 99.6

Thaseen and Kumar
[41] NSL-KDD NBTree 97.8 4.8 -

Ustebay, Turgut and
Aydin [42]

CIC-IDS
2017 MLP 100 18 -

Le, Kim and
Kim [43]

KDD
1999 LSTM 98.95 9.98 -

Xu et al. [44]
KDD
1999 GRU/

MLP
99.42 0.05 -

NSL-KDD 99.31 0.84 -

Papamartzivanos [45]

KDD
1999

GA/DT

98.24 0.75 98.85

NSL-KDD 95.97 1.08 97.55
UNSW-
NB15 63.76 2.61 84.33

(continue...)

16 • RMCT

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

Article Database Technique Recall
(%)

FPR
(%)

Accu-
racy (%)

Stefanova [47] NSL-KDD RF 99.9 0.16 -
Reyes et al. [51] AWID RF 94.1 0.13 99.41
Wang et al. [53]. NSL-KDD MLP 80.6 19.4 80.6
Mahdavifar and
Ghorbani [54] Private DNN - 1.8 97.5

Source: Prepared by the authors.

Also in the Table 3, it is verified that some studies
obtained an FPR of less than 1%, with a recall of 99%.
This high performance occurred once in the 1999
DARPA base, once in the 1999 KDD and three times
in the NSL-KDD. The algorithms used were Bayesian
Networks, DT, RF and a combination of GRU with
MLP. Without doing an explainability analysis on
these models, there is no way to know whether such
performances will be maintained in real applications.
Although the development of the methods and the
performances achieved were of high relevance,
one must also understand whether the attributes used
for detection represent general relationships that are
not restricted to the databases used.

Even if such performances are maintained in real
applications, even the lowest FPR obtained, in this
case, 0.05% for the 1999 KDD base, can generate a
considerable amount of false positives in highly fast
and unbalanced networks, i.e., with a much higher

amount of benign traffic than those of malicious
traffic. It should also be noted that the KDD 1999
database, in addition to being old, has imperfections
that facilitate the task of classifying the model [19].
In addition, the article that employed it [44] is much
more recent than the date of its construction. This all
supports overrated performance. On the other hand,
one should see the 100% recall obtained in the
CIC-IDS 2017 base was only possible with an FPR
of 18%, well above 0.05%. In the UNSW-NB15 base,
made available in 2015, the FPR was 2.61%, however,
with a low recall (63.76%). Certainly, an adjustment
in the detector threshold to increase this recall would
cause a considerable increase in FPR. However,
the research must be expanded to get more data about
the performances obtained in more recent databases.

Table 4 summarizes the studies that presented
other proposals, in addition to only obtaining a high
performance index. With the exception of [45], contained
in subsection 6.1, all studies in this table were extracted
from subsection 6.2 and 6.3. Therefore, in general,
the proposals of these studies are related to strategies
to treat the occurrence of false positives, or to aspects
of explainability, to obtain knowledge about which
combinations of attribute values represent an attack,
and whether there is coherence in this combination.

Table 4 – Articles on intrusion detection with objectives other than performance.

Article Databases Technique Objective Result

Papamartzivanos [45] KDD 1999 and
NSL-KDD STL To develop a self-adaptive

signature-based IDS.
The self-adapting IDS overcame static IDS
in diverse environments.

Subba, Biswas and Karmakar [48] DARPA 1999 Vulnerability-based detec-
tion filtering.

Reduction of FPR in
signature IDS.

Increased accuracy, without considerable
degradation in recall.

Tjhai et al. [49] Private
Adjustments to IDS rules
related to signatures that
most generate false positives.

Reduction of FPR in
signature IDS.

Decrease in the proportion of false
positives (in relation to the total amount of
alarms) from 95.5% to 86.8%.

Marino, Wickramasinghe
and Manic [30] NSL-KDD Approach

Adversarial

Understanding the reason for
false positive occurrence in a
group of examples, of normal
traffic, classified in DoS attack.

Obtained the attributes that most
contributed to the erroneous classification,
as well as how much such attributes should
be changed for a correct classification.

Wang et al. [53] NSL-KDD SHAP

Check which attributes were
most used by the model in clas-
sifying Neptune attacks in DoS,
and whether there is consistency
in this attribute choice.

Obtained the attributes that most contributed
to Netpune’s classification in DoS. There was
more coherence in the one-vs-all MLP model
than in the multiclass MLP.

Mahdavifar and Ghorbani [54] Private Extraction of model rules
Replacing an uninterpretable
DNN model with an
interpretable one.

Obtained an expert model, by extracting
rules from the DNN model, with little
degradation in performance.

Source: Prepared by the authors.

Tab. 3 - Continuation

 RMCT • 17

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

7. Conclusion
ML has shown to be a promising research field

in intrusion detection activity, due to the high
performance obtained in simulated databases.
However, there is no guarantee that the same level
of performance will be achieved in real applications.
Therefore, studies are needed to verify the level of
similarity between simulated bases and real traffic.
An obstacle that arises is the possibility of exposing
sensitive information contained in this type of traffic
by making it public for studies.

Another approach to analyze possibilities for
maintaining performance in real applications would

be through explainability. This technique allows us
to verify the factors considered most important by
complex ML models in the task of detecting intrusion.
Thus, the study of these factors can conclude whether
they really represent general characteristics, related
to attacks, or benign traffic, regardless of whether the
environment is real or simulated.

Finally, the problem of the occurrence of false
positives was also verified, which can lead to the
neglect of real attacks, camouflaged by an excessive
amount of alarms. IDSs using ML are more
susceptible to these circumstances, which in general
has been an obstacle in the implementation of this
technology in intrusion detection.

References
[1]	 ALYASIRI, H. Developing Efficient and Effective Intrusion Detection System using Evolutionary Computation.

Thesis (Computer Science PhD) – University of York, Heslington, 2018.
[2]	 AKSU D.; AYDIN M. A. Detecting Port Scan Attempts with Comparative Analysis of Deep Learning and Support

Vector Machine Algorithms. In International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism
(IBIGDELFT). Piscataway: IEEE, 2018. p. 77–80. http://dx.doi.org/10.1109/IBIGDELFT.2018.8625370.

[3]	 HACKER tries to poison water supply of Florida city. BBC News, 8 fev. 2021. Available in: https://www.bbc.com/
news/world-us-canada-55989843. Accessed on: February 2021.

[4]	 INTERNATIONAL ORGANIZATION FOR STANDARDIZATION – ISO; INTERNATIONAL
ELECTROTECHNICAL COMMISSION – IEC. Joint Technical Committee ISO/IEC JTC 1/SC 127. ISO/IEC
27032:2012(en) Information technology — Security techniques — Guidelines for cybersecurity. Whashington,
DC: ISO: IEC, 2012. Available in: https://www.iso.org/obp/ui/#iso:std:iso-iec:27032:ed-1:v1:en. Accessed on:
Sept. 24, 2021.

[5]	 AMOROSO, E. G.; AMOROSO, M. E. From CIA to APT: An Introduction to Cyber Security. 2017.
[6]	 SCARFONE, K. A.; MELL, P. M. NIST Special Publication 800-94 – Guide to Intrusion Detection and Prevention

Systems (IDPS): Recommendations of the National Institute of Standards and Technology. Gaithersburg, MD:
National Institute of Standards and Technology, 2007.

[7]	 INDIAN CYBER SECURITY SOLUTIONS. Intrusion Detection System and its Detailed Working Function.
ICSS, 2021. Available in: https://indiancybersecuritysolutions.com/intrusion-detection-system-working-function.
Accessed on: Aug, 17, 2021.

[8]	 THOMA, M. Receiver Operating Characteristic (ROC) curve with False Positive Rate and True Positive Rate.
Wikimedia Commons, 2018. Available in: https://commons.wikimedia.org/w/index.php?title=File:Roc-draft-
xkcd-style.svg&oldid=491003296. Accessed on: Jan. 7, 2021.

[9]	 XIN, Y.; KONG, L.; LIU, Z.; CHEN, Y.; LI, Y.; ZHU, H. et al. Machine Learning and Deep Learning Methods
for Cybersecurity. IEEE Access, v. 6, p. 35365–35381, 2018. https://doi.org/10.1109/ACCESS.2018.2836950.

[10]	KELLEHER, J. D.; NAMEE B. M.; D’ARCY, A. Fundamentals of Machine Learning for Predictive Data
Analytics. 2. ed. Cambridge: MIT Press, 2020.

[11]	MUELLER, J. P.; MASSARON, L. Machine Learning for Dummies. Hoboken: John Wiley & Sons, 2016.
[12]	GHAHRAMANI, Z. Unsupervised Learning. In BOUSQUET, O.; VON LUXBURG, U.; RÄTSCH, G. (ed.).

Advanced Lectures on Machine Learning. ML Summer Schools 2003. Amsterdam: Springer, 2003. https://doi.org/
10.1007/978-3-540-28650-9_5.

[13]	EVSUKOFF, A. G. Inteligência Computacional: Fundamentos e Aplicações. Rio de Janeiro: E-papers, 2020.

18 • RMCT

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

[14]	VANDERPLAS, J. Python Data Science Handbook: Essential Tools for Working with Data. Sebastopol:
O’Reilly, 2016.

[15]	RASCHKA S.; MIRJALILI, V. Python Machine Learning: Machine Learning and Deep Learning with Python,
scikit-learn, and TensorFlow. 2. ed. Birmingham: Packt Publishing, 2017.

[16]	BUCZAK, A. L.; GUVEN, E. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intru-
sion Detection. IEEE Communications Surveys & Tutorials, v. 18, n. 2, p. 1153–1176, 2016. https://doi.org/10.1109/
COMST.2015.2494502.

[17]	DARPA Intrusion Detection Evaluation Dataset. MIT Lincoln Laboratory, 1998/1999. Available in:
https://www.ll.mit.edu/r-d/datasets. Accessed on: Aug. 27, 2021.

[18]	DATA – KDD Cup 1999: Computer network intrusion detection. SIGKDD, 1999. Available in:
https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data. Accessed on: Aug. 27, 2021.

[19]	TAVALLAEE, M.; BAGHERI, E.; LU, W.; GHORBANI, A. A. A detailed analysis of the KDD CUP 99 data set.
In IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA). Piscataway:
IEEE, 2009. p. 1–6. https://doi.org/10.1109/CISDA.2009.5356528.

[20]	NSL-KDD DATASET. Canadian Institute for Cybersecurity. University of New Brunswick, 2009. Available in:
https://www.unb.ca/cic/datasets/nsl.html. Accessed on: Aug. 27, 2021.

[21]	CTU-13 DATASET. A Labeled Dataset with Botnet, Normal and Background Traffic. Stratosphere Lab, 2011.
Available in: https://www.stratosphereips.org/datasets-ctu13. Accessed on: Aug. 29, 2021.

[22]	DELPLACE, A.; HERMOSO S.; ANANDITA, K. Cyber Attack Detection thanks to Machine Learning
Algorithms. arXiv preprint, 2001.06309, 2020.

[23]	DATASETS. Canadian Institute for Cibersecurity, University of New Brunswick, 2020. Available in:
https://www.unb.ca/cic/datasets/index.html. Accessed on: Aug. 29, 2022.

[24]	WIRELESS DATASETS. University of the Aegean, 2021. Available in: https://icsdweb.aegean.gr/awid/download-
-dataset. Accessed on: Dec. 23, 2021.

[25]	KOLIAS, C.; KAMBOURAKIS, G.; STAVROU, A.; GRITZALIS, S. Intrusion Detection in 802.11 Networks:
Empirical Evaluation of Threats and a Public Dataset. IEEE Communications Surveys & Tutorials, v. 18, n. 1,
p. 184–208, 2016. https://doi.org/10.1109/COMST.2015.2402161.

[26]	MOUSTAFA, N.; SLAY, J. UNSW-NB15: a comprehensive data set for network intrusion detection systems
(UNSW-NB15 network data set). In Military Communications and Information Systems Conference (MilCIS).
Piscataway: IEEE, 2015. p. 1–6. https://doi.org/10.1109/MilCIS.2015.7348942.

[27]	GARCIA, S.; PARMISANO, A.; ERQUIAGA, M. J. IoT-23: A labeled dataset with malicious and benign IoT
network traffic (Version 1.0.0). Zenodo. Stratosphere Lab, 2020. Available in: https://www.stratosphereips.org/
datasets-iot23. Accessed on: Dec. 23, 2021.

[28]	USB-IDS-1. Università degli Studi del Sannio di Benevento, 2021. Available in: http://idsdata.ding.unisannio.it/
datasets.html. Accessed on: Dec. 25, 2021.

[29]	NISIOTI, A.; MYLONAS, A.; YOO, P. D.; KATOS, V. From Intrusion Detection to Attacker Attribution:
A Comprehensive Survey of Unsupervised Methods. IEEE Communications Surveys & Tutorials, v. 20, n. 4,
p. 3369–3388, 2018. https://doi.org/10.1109/COMST.2018.2854724.

[30]	MARINO, D. L.; WICKRAMASINGHE, C. S.; MANIC, M. An Adversarial Approach for Explainable AI in
Intrusion Detection Systems. In 44th Annual Conference of the IEEE Industrial Electronics Society. Piscataway:
IEEE, 2018. p. 3237–3243. https://doi.org/10.1109/IECON.2018.8591457.

[31]	KHRAISAT, A.; GONDAL, I.; VAMPLEW, P.; KAMRUZZAMAN, J. Survey of intrusion detection systems:
techniques, datasets and challenges. Cybersecurity, v. 2, n. 20, 2019. https://doi.org/10.1186/s42400-019-0038-7.

[32]	FAN, W.; MILLER, M.; STOLFO, S. J.; LEE W.; CHAN, P. K. Using artificial anomalies to detect unknown
and known network intrusions. In IEEE International Conference on Data Mining. Piscataway: IEEE, 2001.
p. 123–130. https://doi.org/10.1109/ICDM.2001.989509.

[33]	HU, W.; LIAO, Y.; VEMURI, V. R. Robust Support Vector Machines for Anomaly Detection in Computer
Security. In International Conference on Machine Learning and Applications (ICMLA). Piscataway: IEEE,
2003. p. 168–174.

[34]	BIVENS, A.; PALAGIRI, C.; SMITH, R.; SZYMANSKI, B.; EMBRECHTS, M. Network-Based Intrusion
Detection Using Neural Networks. In Intelligent Engineering Systems through Artificial Neural Networks
ANNIE-2002, v. 12. New York: ASME Press, 2002. p. 579–584.

 RMCT • 19

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

[35]	KRUEGEL, C.; MUTZ, D.; ROBERTSON, W.; VALEUR, F. Bayesian event classification for intrusion detection.
In 19th Annual Computer Security Applications Conference (ACSAC). Piscataway: IEEE, 2003. p. 14–23.
https://doi.org/10.1109/CSAC.2003.1254306.

[36]	SHON, T.; MOON, J. A hybrid machine learning approach to network anomaly detection. Information
Sciences, v. 177, n. 18, p. 3799–3821, 2007. https://doi.org/10.1016/j.ins.2007.03.025.

[37]	TAJBAKHSH, A.; RAHMATI, M.; MIRZAEI, A. Intrusion detection using fuzzy association rules. Applied Soft
Computing, v. 9, n. 2, p. 462–469, 2009. https://doi.org/10.1016/j.asoc.2008.06.001.

[38]	AMOR, N. B.; BENFERHAT S.; ELOUEDI, Z. Naive Bayes vs decision trees in intrusion detection systems.
In Proceedings of the 2004 ACM Symposium on Applied Computing, Association for Computing Machinery.
New York: ACM Digital Library, 2004. p. 420–424. https://doi.org/10.1145/967900.967989.

[39]	CHEN, W. H.; HSU, S. H.; SHEN, H. P. Application of SVM and ANN for intrusion detection. Computers &
Operations Research, v. 32, n. 10, p. 2617–2634, 2005. https://doi.org/10.1016/j.cor.2004.03.019

[40]	ADEBOWALE, A.; IDOWU, S. A.; AMARACHI, A. A. Comparative study of selected data mining algorithms used
for intrusion detection. International Journal of Soft Computing and Engineering, v. 3, n. 3, p. 237–241, 2013.

[41]	THASEEN, I. S.; KUMAR, C. A. An analysis of supervised tree based classifiers for intrusion detection system.
In International Conference on Pattern Recognition, Informatics and Mobile Engineering. Piscataway: IEEE,
2013. p. 294–299. https://doi.org/10.1109/ICPRIME.2013.6496489.

[42]	USTEBAY, S.; TURGUT, Z.; AYDIN, M. A. Intrusion Detection System with Recursive Feature Elimination by
Using Random Forest and Deep Learning Classifier. In International Congress on Big Data, Deep Learning
and Fighting Cyber Terrorism (IBIGDELFT). Piscataway: IEEE, 2018. p. 71–76. https://doi.org/10.1109/
IBIGDELFT.2018.8625318.

[43]	LE, T. T. H.; KIM, J.; KIM, H. An Effective Intrusion Detection Classifier Using Long Short-Term Memory with
Gradient Descent Optimization. In International Conference on Platform Technology and Service (PlatCon).
Piscataway: IEEE, 2017. p. 1–6. https://doi.org/10.1109/PlatCon.2017.7883684.

[44]	XU, C.; SHEN, J.; DU, X.; ZHANG, F. An Intrusion Detection System Using a Deep Neural Network with Gated
Recurrent Units. IEEE Access, v. 6, p. 48697–48707, 2018. https://doi.org/10.1109/ACCESS.2018.2867564.

[45]	PAPAMARTZIVANOS, D. C. Advanced machine learning methods for network intrusion detection.
Tese (Doutorado em Filosofia) – University of the Aegean, Mitilene, 2019.

[46]	RAINA, R.; BATTLE, A.; LEE, H.; PACKER B.; NG, A. Y. Self-Taught Learning: Transfer Learning from Unlabeled
Data. In Proceedings of the 24th International Conference on Machine Learning, Association for Computing
Machinery. New York: ACM Digital Library, 2007. p. 759–766. https://doi.org/10.1145/1273496.1273592.

[47]	STEFANOVA, Z. S. Machine Learning Methods for Network Intrusion Detection and Intrusion Prevention
Systems. Tese (Doutorado em Filosofia) – University of South Florida, Tampa, 2018.

[48]	SUBBA, B.; BISWAS, S.; KARMAKAR, S. False alarm reduction in signature-based IDS: game theory approach.
Security and Communication Networks, v. 9, n. 18, p. 4863–4881, 2016. https://doi.org/10.1002/sec.1661.

[49]	TJHAI, G. C.; PAPADAKI, M.; FURNELL, S. M.; CLARKE, N. L. Investigating the problem of IDS false
alarms: An experimental study using Snort. In Proceedings of The Ifip Tc 11 23rd International Information
Security Conference, v. 278. Laxenburg: IFIP, 2008. p. 253–267.

[50]	ZOHREVAND, Z.; GLÄSSER, U. Should I Raise The Red Flag? A comprehensive survey of anomaly scoring
methods toward mitigating false alarms. arXiv preprint, 1904.06646, 2019.

[51]	REYES, A. A.; VACA, F. D.; AGUAYO, G. A. C.; NIYAZ, Q.; DEVABHAKTUNI, V. A Machine Learning Based
Two-Stage Wi-Fi Network Intrusion Detection System. Electronics, v. 9, n. 10, p. 1689, 2020. https://doi.org/10.3390/
electronics9101689.

[52]	LUNDBERG, S. M.; LEE, S. I. A Unified Approach to Interpreting Model Predictions. In 31th Conference on
Neural Information Processing Systems. New York: ACM Digital Library, 2017. p. 4768–4777.

[53]	WANG, M.; ZHENG, K.; YANG, Y.; WANG, X. An Explainable Machine Learning Framework for Intrusion
Detection Systems. IEEE Access, v. 8, p. 73127–73141, 2020. https://doi.org/10.1109/ACCESS.2020.2988359.

[54]	MAHDAVIFAR, S.; GHORBANI, A. A. DeNNeS: deep embedded neural network expert system for detecting
cyber attacks. Neural Computing and Applications, v. 32, n. 18, p. 14753–14780, 2020. https://doi.org/10.1007/
s00521-020-04830-w.

[55]	GALLANT, S. I. Neural Network Learning and Expert Systems. 3. ed. Cambridge: MIT Press, 1995.

