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ABSTRACT: With the public availability of simulated intrusion 
detection datasets, Machine Learning has been increasingly used 
in cyber attack detection work. Despite the fact that the performance 
(precision and recall) has been highlighted, on the other hand, there has 
been a lack of critical analysis of what was actually learned by the model, 
with the intention to conclude whether or not this performance will be 
maintained in real applications. In this sense, explainability techniques 
appear as a promising possibility in the execution of this task, since the 
analysis of the False Positive Rate of these models has usually been 
neglected. This can become an important problem, with the increase in 
speed and amount of data transmitted over the internet. This research 
proposes to raise discussions about these problems, presenting some 
articles related to them.
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RESUMO: Com a disponibilização pública de bases de dados simuladas 
de detecção de intrusão, o Aprendizado de Máquina vem sendo 
empregado, cada vez mais, em estudos de detecção de ataques cibernéticos. 
Se, por um lado, tem-se destacado o desempenho (precisão e abrangência) 
obtido, por outro, tem havido uma carência na análise crítica sobre o que 
de fato foi aprendido pelo modelo, visando concluir se haverá ou não a 
manutenção desse desempenho em aplicações reais. Nesse sentido, técnicas 
de explicabilidade surgem como uma possibilidade promissora na execução 
dessa tarefa, uma vez que, usualmente, vem sendo negligenciada a 
análise da Taxa de Falso Positivo desses modelos, o que pode se tornar um 
problema importante, com o aumento da velocidade e quantidade de dados 
trafegados pela internet. Esta pesquisa se propõe a levantar discussões 
sobre esses problemas, apresentando alguns artigos a eles relacionados.

PALAVRAS-CHAVE: Detecção de Intrusão. Aprendizado de Máquina. 
Explicabilidade. Taxa de Falso Positivo.
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1. Introduction

The emergence of internet has 
revolutionized modern life, making it 
possible to carry out numerous activities 

online. Purchases, banking transactions, meetings, 
classes, courses, interactions via social networks, text, 
voice and video communication, remote management, 
etc., have  become everyday activities in society [1]. 
On the other hand, the increased use of informatics 
and online tools has brought with it vulnerabilities 
widely exploited by ill-intentioned individuals and 
organizations through malicious actions in cyberspace. 
These actions are known as cyberattacks or intrusions, 
and cause considerable harm to users and businesses 
that inevitably use the Internet. Typically, these attacks 
have diverse purposes, such as illicitly obtaining 
financial benefits, harming institutions, propagating 
ideologies and even terrorism [2].

Thus, cyberattacks have been an increasing 
problem as society becomes more dependent on 
information technology. Two factors are responsible 
for this problem: the existence of vulnerabilities in 
information systems and the presence of agents with the 
potential to exploit such vulnerabilities. These agents 
can be individuals, groups, and even nations.

In addition, the increasing insertion of computers 
and data networks in processes of management, 
monitoring, automation and control of critical 
infrastructures, such as power generation plants, 
transportation systems, water collection, storage 
and distribution stations, emergency services,  etc., 
is inevitable. In this sense, the problem can 
worsen considerably in cases related to this type of 
infrastructure and, depending on the vulnerabilities 
in them and the criticality of the attack, such damage 
can be catastrophic. An example of this occurred 
recently in Florida, United States, where a hacker 
gained access to the water treatment system, 
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increasing the proportion of caustic soda and 
exposing the local population to the risk of chemical 
contamination  [3]. Fortunately, a local employee 
noticed what had happened and reversed the action 
in a timely manner.

Thus, the detection of cyberattacks has 
assumed a leading role in issues related to the 
prevention and mitigation of threats in the field of 
information technology.

2. Attack detection
Cyber attacks are offensive and malicious 

maneuvers directed at information systems, 
computer infrastructures, data networks and 
personal computing equipment. They have 
the purpose of exposing, changing, disabling, 
destroying, stealing or obtaining unauthorized 
access to data or computational resources [4]. Thus, 
a cyber attack compromises at least one of the three 
aspects of information security: confidentiality, 
integrity or availability [5].

Attack detection is a task performed by an 
Intrusion Detection System (IDS) – in this context, 
the terms attack and intrusion will be used 
interchangeably. This  detection arises from 
monitoring events that occur in a computer system 
or data network. These  events are then analyzed, 
to find signs of possible incidents representing 
violations or imminent threats of security policies 
breach [6]. As illustrated in Figure 1, there are two 
basic detection methods:
•	Signature-based detection: detection of traces, 

called signatures, that uniquely identify a given 
attack. These traces are stored in a database that 
needs to be constantly updated as new types 
of attacks emerge.

•	Anomaly-based detection: detection of patterns that 
are outside those considered normal or acceptable. 
This normal behavior can be defined by a data 
network security expert or can be learned by some 
Machine Learning (ML) technique.

Signature

Router

Anomaly

IDS

Internet

Firewall

Fig. 1 – Example of IDS use. Source: Adapted from [7].

The schematic in Figure 1 shows an IDS composed 
of only one equipment at a specific location on the 
network, typically between the firewall and the local 
network to be protected. The advantage of this 
schematic is that it considerably decreases the amount 
of malicious data to be analyzed by IDS, since much of 
the traffic considered inappropriate is barred in the 
firewall. In addition, larger institutions usually have 
a very extensive local network, often composed of 
numerous subnets. In this case, the IDS deployment 
is more complex, requiring the installation of other 
components, such as:
•	Sensors: equipment connected at different points in 

the network, to collect data, for example, IP packets;
•	Agents: software with functions similar to sensors, 

but installed on hosts. In this way, agents monitor 
computers and may collect data other than 
network-specific data, for example, access to the 
file system;

•	Management server: responsible for receiving, 
processing and correlating the data sent by sensors 
and agents. It is usually in this equipment that the 
intrusion alert is generated;

•	Database server: responsible for storing the data 
collected by agents and sensors;

•	Console: responsible for providing an interface for 
IDS users and administrators.
Typically, the management and data exchanged 

between these devices takes place on an independent 
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network, which provides greater protection against 
attacks directed at an IDS. This independent network 
can ideally be a second physical network, providing 
more security, but has a higher installation cost. 
An alternative is to use a Virtual Local Area Network 
(VLAN) that shares the same physical network, 
or to traffic management data without the use of 
VLAN, but with encryption. Both alternatives have 
a lower installation cost, although they increase the 
bandwidth consumption of the main data network, 
and also reduce the safety of the equipment that 
makes up the IDS.

Regardless of the size of the network and the 
number of sensors and agents, in practice IDS 
based on signature and anomaly are used together, 
since one type complements the other. This is because 
a signature-based IDS has the advantage of having 
a low False Positive Rate (FPR), although it is inefficient 
in detecting new types of attacks. This  inefficiency 
remains even when these new attacks are only minor 
variations of those already catalogued. In the case 
of an anomaly-based IDS, the opposite occurs: it has 
the advantage of detecting new attacks, but with 
a trend of higher FPR. This is because it is difficult to 
precisely model the normal behavior of the network, 
which can vary considerably depending on its size 
and complexity. In addition, this normal behavior can 
evolve over time, requiring revisions and updates of 
the model that represents it.

In short, the IDS should ideally provide a 
high coverage (also known as sensitivity, recall, 
True  Positive Rate (TPR), or detection rate), with  a 
low FPR. This  characteristic is highly desirable, 
being represented by the largest possible area under 
the ROC (Receiver Operating Characteristic) curve. 
This curve was developed by military radar operators, 
showing the trade-off between the FPR and the recall 
of the radar receiver, which explains its nomenclature. 
Figure  2 characterizes the ROC curves of three 
different classifiers. Different points belonging to 
the same curve mean different decision thresholds 
for the same classifier. Note that the best classifiers 
can achieve greater recall with low FPR and that 
this results in a greater area under the ROC curve. 

In addition, the smallest area occurs when the classifier 
is purely random. In this case, where the area is equal 
to 0.5, the classifier always has the same probability of 
detection, regardless of the sample to be classified.
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Fig. 2 – Examples of ROC curve. Source: Adapted from [8].

3. Machine Learning
ML is a field of Artificial Intelligence that is 

strongly related to computational statistics, focusing 
on prediction activity through computational 
optimization methods [9], which enables the execution 
of classification or regression tasks by the computer. 
Classifying means determining to which class a given 
sample belongs. As there is a finite number of classes, 
these can be represented by discrete values. An example 
would be spam or non-spam emails classification. In the 
regression task, the sample is related to a continuous 
value, such as prediction of real estate values.

Such samples are represented by their important 
characteristics, also called attributes. In the case of 
a spam rating, for example, each email is considered 
a sample. A possible attribute may be the number of 
times a given word, or word composition, appears 
in the email. Examples of such words are: amazing, 
satisfaction, now, bonus, win, offer, discount etc. In the 
case of real estate, some examples of attributes are the 
area, the number of rooms, the location and the age.

In this way, computational algorithms inductively 
“learn” relationships between existing attributes in 
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a database [10]. The two main forms of learning 
are: supervised and unsupervised. In the first case, 
examples are provided, composed of attributes and 
responses, so that the model learns the target function 
in an inductive and approximate way. This  function 
represents the mapping between attributes and 
responses (also known as target attribute or labels), 
being usually complex and unknown [11]. Spam 
email classification and property value prediction are 
supervised tasks since target values (spam, non-spam, 
and property price) are provided. In  unsupervised 
learning, there is no provision of labels to the 
algorithm. In  this case, the  objective of the model 
is to learn, by itself, some  structure inherent to 
the database [11]. For  example, there  are sample 
grouping techniques based on similarity metrics, 
known as clustering. Projection techniques, such  as 
Principal Component Analysis  (PCA), also belong to 
this category. Such techniques aim at grouping 
and reducing data dimensionality, two  pillars of 
unsupervised learning [12].

For an effective application of ML, the database is 
divided into three sets: training, validation, and testing. 
In the training set, computational algorithms are 
applied iteratively, in order to minimize a function 
known as cost. This function indicates whether the 
predicted values from the attributes are, on average, 
close to those contained in the labels [11]. The lower the 
value of the cost function, the greater this proximity 
will be. A technique widely used in this minimization 
is the gradient descent, which adjusts the model 
parameters automatically, based on the gradient of 
the cost function in relation to these parameters.

The test set is used to verify the performance 
of the model in different examples of the training 
set, indicating whether the relationship between 
attributes and labels has been adequately learned. 
In this ideal case, the model can generalize this 
relationship well, being able to disregard possible 
noises inherent in the training set.

When this ideal situation does not occur, it is 
likely that the model has a high bias or overfitting. 
Although both degrade performance in the test set, 
their causes are quite distinct. High bias occurs when 

the model is very simple, unable to approximate 
the target function, regardless of any adjustment in 
its parameters. This problem is verified when the 
performance is low in both the training set and the 
test set. To solve it, one must replace the model with 
a more complex one, and it may also be necessary to 
obtain a greater number of attributes. On the other 
hand, overfitting occurs when the model is able to 
approximate functions more complex than the target 
function itself [13]. Consequently, the model ends up 
generating a function that fits too much to the training 
set, influenced by noise and imperfections, which do 
not generalize the target function properly [10, 14]. 
This problem is verified when there is a considerably 
higher performance in the training set compared to 
the test set. Overfitting can be reduced by obtaining 
a greater amount of training examples, or even by 
regularization techniques.

In addition to the model parameters, which are 
automatically adjusted by optimization algorithms, 
there are others that need to be adjusted manually and 
empirically, called hyperparameters. Some examples 
of hyperparameters are: depth of the decision tree, 
number of neurons and layers of the neural network, 
learning rate, regularization rate, etc. The  main 
function of the validation set is to assist in the 
adjustment of hyperparameters [15]. These receive 
different values, which are used to train the model in 
the training set and then validated in the validation 
set, where the hyperparameters that obtained the 
best performance are selected. This procedure can be 
performed by means of a Grid Search.

One application of ML that has been gaining 
ground in academia is the detection and classification 
of cyberattacks. This is mainly due to the availability 
of public databases, as presented in section 4. 

4. Database with anomalous traffic
Databases are essential for ML, as they contain the 

information to be learned inductively by the model. 
However, there is a great lack of quality databases, 
obtained by real traffic collection. One reason for 
this is that companies may end up exposing some 
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vulnerability or sensitive information by making data 
available for research on the event of a suffered invasion. 
Another reason is that it is difficult to obtain real traffic 
labels. A hacker would probably not have the goodwill 
to inform the victim of the class of attack employed. 
In fact, he won’t even report an attack. An alternative is 
to obtain the labels through a signature IDS; however, 
unknown attacks (yet  without signature) would be 
labeled as normal traffic, negatively influencing the 
learning of the algorithm.

Thus, it is no coincidence that practically all 
public cyberattack databases were created through 
simulation. An important factor to be considered in 
these bases is the level of similarity in relation to a 
real situation. Probably, a high-performing IDS on an 
unrealistic basis may not work properly in a real job.

Another relevant aspect refers to the examples 
contained in these bases. They can be provided in raw 
data (in the form of IP packets), or in processed data (in the 
form of traffic or network flow). In the first case, each IP 
packet represents an example of the database. Some 
attributes are common to all packages, such as header 
size, total package size, protocol, source and destination 
IP address. Other attributes are protocol-specific (TCP, 
UDP, etc.) such as source and destination ports, which 
do not exist in all protocols. These packages can be 
captured and stored in pcap format, through specific 
applications. Some popular applications are TCPDump, 
Wireshark, Snort and Nmap [16].

In the form of network flow, these IP packets are 
processed and formatted in such a way that each 
example of the database consists of information that 
defines a uni- or bi-directional sequence of packets 
that share the following attributes: source IP address, 
destination IP address, protocol, source port and 
destination port [16]. TCP connections are an example 
of bidirectional data flow. In addition, other statistical 
data may be added to these attributes, such as, 
for example, number of bytes emitted by the source, 
number of bytes emitted by the destination, average 
time between packets, packet rate, etc. Compared 
to databases in the form of IP packets, network flow 
databases have a smaller size because they disregard 
information in the packet payload.

From 1998, intrusion databases began to be made 
available, which enabled the introduction of ML 
techniques in the field of cybersecurity. These bases 
were generated by simulating malicious and benign 
traffic. Some of them also included background 
traffic, i.e., real and anonymized traffic, which are 
not precisely known whether benign or malignant. 
In  some cases, malignant traffic classes are also 
provided. The main public bases available are:
•	DARPA 1998/1999 [17]: Defense Advanced 

Research Projects Agency DARPA 1998 and DARPA 
1999, created by the Massachusetts Institute of 
Technology (MIT), being widely used and discussed 
in several articles. The first was obtained in a 
simulation that lasted nine weeks. The first seven 
weeks gave rise to the training set, and the last two, 
to the test set. The  attributes of this database are 
provided in the form of raw data, i.e. IP packets. 
One year later, a  second base, entitled DARPA 
1999, was available. It was generated by a five-week 
simulation, the first three being training and the 
last two for testing. This base has a significantly 
greater amount of attack types compared to the 
first. The attributes of this base are also provided 
through IP packets.

•	KDD Cup 1999 [18]: used in a cyber attack 
classification competition, this base has 41 network 
flow-oriented attributes (NetFlow), derived from 
DARPA 1998. The KDD Cup 1999 database, however, 
has serious limitations [16] such as high sample 
redundancy and inaccuracies derived from packet 
loss during its creation, caused by excessive data 
traffic. In addition, the vast majority of examples, 
both in the training set and in the test set, were easy 
to classify, not requiring very complex models [19].

•	NSL-KDD [20]: it was built in 2009 by a careful 
sampling of the KDD 1999 base, where redundancies 
were eliminated and the number of easy examples 
reduced. Thus, high accuracy was no longer 
possible to be obtained with overly simple models. 
The main simulated attacks on this base are DoS 
(Denial of Service), unauthorized administrator 
access (U2R – User to Root), access to a local network 
host by an unauthorized remote machine (R2L – 
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Remote to Local), and scanning of network resource 
information (Probe or Scan).

•	CTU-13 [21]: was established in 2011 by the CTU 
University, Czech Republic. The term 13 comes from 
this base having thirteen different scenarios where 
Botnet attacks occur. Such scenarios vary greatly 
in difficulty level of attack detection. Data from 
this database is provided in raw data (IP packets) 
and  processed data (NetFlow standard, WebLogs 
and others). Delplace, Hermoso and Anandita [22] 
used this basis to verify the performance of various 
ML models, in addition to analyzing the relative 
importance of each attribute.

•	CIC-IDS [23]: these are public databases provided 
by the Canadian Institute of Cybersecurity, located 
at the University of New Brunswick. There are 
three: one launched in 2012, one in 2017 and 
another, more recent, in 2018. The latter two 
contain benign traffic and more current attacks. 
Data is available in raw form (pcap) and in the form 
of network flow, through the processing of the raw 
data by a tool of this Institute, called CICFlowMeter. 
This tool characterizes the network flow through 
six attributes: time stamp, source and destination IP 
address, source and destination port, and protocol. 
An interesting feature on this database was the 
method to generate benign traffic, which mimics 
the behavior of human interactions, therefore being 
more similar to actual traffic.

•	AWID [24]: it is a project of the University of Aegean, 
located in Greece, where two public databases 
(AWID2 and AWID3) extracted from Wi-Fi traffic are 
made available. They make it possible to develop and 
analyze IDSs specific to the wireless environment, 
which has vulnerabilities different from cabled. 
AWID2, made available in 2015, is  considered the 
first public base of wireless networks  [25], and has 
three categories of attack: injection, denial of 
service and personification, in addition to normal 
traffic. These attacks are designed to exploit 
existing vulnerabilities in the authentication 
environment, which uses WEP (Wired Equivalent 
Protection), WPA, and WPA2 (Wi-Fi Protected Access). 
The AWID3, launched in 2021, used a more modern 

authentication environment, called the Extensible 
Authentication Protocol (EAP), enabling the study of 
attacks designed to exploit vulnerabilities in this 
new environment. Multilayer attacks have also been 
included, which exploit vulnerabilities of the link 
layer (802.11) and higher layers.

•	UNSW-NB15 [26]: this is a public cyberattack 
base launched in 2015, available in pcap, BRO, 
Argus, and csv formats. Examples of this base were 
created through a tool called IXIA Perfect Storm, 
which belongs to the Australian Center for Cyber 
Security  (ACCS). This base has nine attack types, 
available in the form of 49 attributes, in addition to 
the class label. It is available in the full version with 
a total of 2,540,044 examples and in the reduced 
version, with the training and test sets having 
175,341 and 82,332 examples, respectively.

•	IoT-23 [27]: this is a base that contains traffic captured 
from 2018 to 2019, and was published in January 
2020 at the University of CTU, Czech  Republic, 
being funded by the antivirus company Avast. 
The term 23 comes from this base having 23 different 
scenarios where attacks related to IoT (Internet of 
Things) equipment occur. This is a labeled database, 
made available in the form of pcap files and in the 
form of data traffic, obtained through the Zeek 
software. It has eight types of attacks, in addition to 
benign traffic, which was generated by three known 
uninfected IoT equipment.

•	USB-IDS-1 [28]: this is a database made available in 
2021 by the University of Sannio, Benevento (USB), 
Italy, consisting of a variety of DoS attacks (Hulk, 
TCPFlood, Slowloris and Slowhttptest) performed 
against a web server. It can be obtained through raw 
data (pcap format) or data traffic (csv format), the latter 
generated by the same tool used in the CIC-IDS: 
CICFlowMeter databases. For this reason, the existing 
examples in USB-IDS-1 have the same attributes as 
those databases, allowing to test the ML models ability 
to generalize on different bases. An innovative fact in 
the USB-IDS-1 base was the inclusion of defensive 
tools and configurations in the web server, which is 
very common in real applications. Such tools alter 
the traffic profile and may decrease the effectiveness 
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of algorithms trained in other environments. 
In addition, the authors showed that these tools do 
not guarantee a perfect mitigation of attacks, which 
reinforces the need to use IDS.

5. Explainability
Recently, methods that use deep learning, such as 

convolutional and recurrent networks, have obtained 
significant accuracy in image classification tasks and 
natural language processing. This evolution was used 
in the area of intrusion detection, allowing a high 
accuracy in the detection of cyberattacks, with reduced 
FPR [29]. On the other hand, such  models are not 
very transparent, which has increased the importance 
of the development of methods that reasonably 
explain the reasons behind decisions taken by these 
models. However, most articles in this field are still 
exclusively concerned with obtaining high accuracy, 
high detection rates and low FPRs, without considering 
the understanding of the mechanisms that led 
the model to perform a certain classification. With the 
emergence of public databases, there was a tendency 
to a certain competition among authors of articles in 
this area. Finding phrases like “Our method obtained 
a higher accuracy, with a lower false positive rate” is very 
common. Also very common is to display, in  these 
articles, a table listing the performance of several other 
methods, extracted from other works, usually with 
lower performance than proposed by them.

This search for high performance resulted in 
a considerable increase in the complexity of the models, 
which made it virtually impossible to understand the 
mechanism behind the decision of these algorithms 
in intrusion detection tasks. This  does not mean 
there is no knowledge about how the algorithm 
performs the classification. For example, in Multi 
Layer Perceptron  (MLP) networks, also known as 
neural networks, however deep and complex they 
may be, algorithm decisions continue to be generated 
by an intricate weighted combination of layer-by-layer 
functions. The term “weighted” refers to the weights 
that multiply the attributes and values of each neuron. 
These weights are adjusted automatically, usually 

by the descending gradient technique or some 
variation of it, to minimize the difference between the 
predicted class and the label to which each example 
of the database actually belongs. The problem is that 
this alone does not clarify which attributes and which 
relationships between these attributes led to a given 
classification. For the algorithm, what matters is to 
minimize the error, regardless of any rationality in 
relation to the characteristics of the examples.

This lack of transparency in complex models causes 
distrust, especially in non-obvious classifications, 
which may contradict the opinion of a human. In this 
case, if the model’s decision does not inform its 
reasons, it is difficult to know if there was an error 
or if the model was able to perceive some important 
detail that escaped human perception. This problem 
is more relevant in applications with low fault 
tolerance, as occurs in the detection of an intrusion. 
In this case, there is a low tolerance for false negatives, 
as no timely action will be taken to stop an undetected 
attack whose presence will only be noticed for its 
consequences. An “opaque” model does not allow the 
analyst to know when and why certain attacks are not 
detected. The application in network intrusion is quite 
distinct from, for example, recommendation systems. 
In this case, it is not so important to know why the 
model recommends a particular product to a user, 
as  long as the algorithm has a high accuracy. These 
cases in which the model errs, which are a minority, 
do not bring serious consequences, only causing the 
user to disregard such recommendations.

In addition, understanding the right decisions 
made by complex models can help the expert discover 
non-trivial hitherto unknown relationships between 
attributes and cyberattacks. On the other hand, 
the  understanding of erroneous decisions enables 
model improvement. Finally, attackers can make 
specific changes to their attacks to evade detection. 
Thus, knowledge of the classification mechanism 
allows specialists to make adaptations that strengthen 
the model against such vulnerability.

Consequently, new studies and new tools have 
emerged to open this black box and provide a more 
rational understanding of the most relevant factors in 
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the decision-making of these models. These studies 
and tools provide what has been conventionally called 
the explainability of the model. Thus, the most recent 
studies dealing with intrusion detection using ML 
began to address not only the performance of the model, 
but also its explainability, allowing the analyst to verify 
the reasonableness of the relationships between the 
attributes abstracted by the model in the classification 
activity. Figure 3 illustrates this procedure.

Database
Machine 

Learning model
Explainable 

interface

Debugging and 
Diagnostics

Why this decision?
Why not any other?
Does it make any sense?
The model can be trusted?

Fig. 3 – Explainable interface. Source: Adapted from [30].

6. Studies on IDS
Due to the importance of this subject, several 

review articles on intrusion detection using ML have 
been published. Some, with an outstanding number 
of citations [16, 31], synthesize most of the review 
objectives, in addition to offering a relevant theoretical 
framework and contributing to improvements in the 
dissemination and analysis of results. Additionally, 
Buczak and Guven [16] highlighted the variety of ML 
techniques available for application in IDS, showing 
how complex it is to establish which of them would be 
the most appropriate, considering the type of attack the 
system should detect. Another important contribution, 
presented by Khraisat et al. [31], is the study of 
evasion techniques used by attackers, one of the main 
challenges in intrusion detection research. Although 
such aspects are essential, these review articles do not 
include works of analysis through explainability, which 
can only be found in review articles from different areas 
of cybernetics. A second gap refers to the inclusion of 
studies that address the potential that IDS models have 
in generating false positives in real applications. Thus, 

this research seeks to complement the existing review 
articles through the inclusion and analysis of these two 
topics. Thus, subsection 6.1 lists the works that use ML, 
favoring the performance of the algorithm; however, 
they do not present a critical analysis of other relevant 
factors, such as, for example, the impacts related to 
FPR, or  even the explainability of the model. These 
factors were analyzed by the studies in subsections 6.2 
and 6.3, respectively. Finally, subsection  6.4 presents 
a comparison between these studies.

6.1. Studies with a focus on performance

Buczak and Guven [16] gathered works that 
seek to develop IDS using signature and anomaly 
detection. The latter has aroused a greater interest 
of the scientific community for employing classical 
techniques of ML and data mining. Studies that used 
public databases  and presented some performance 
information are also of greater interest. One should 
consider that, in DARPA and derivative bases (with the 
exception of NSL-KDD), it is common to obtain results 
with very high performance, outside the context of real 
applications. This is due to a large number of repeated 
records, as well as a predominance of easily classified 
attacks [19]. On the other hand, Khraisat  et  al.  [31] 
conducted a more current research in the area of 
intrusion detection, including studies that used more 
recent bases, especially the CIC-IDS 2017. The most 
relevant works in these studies are shown in Table 1, 
and are briefly described in subsection 6.1.

Tab. 1 – Studies cited in research articles.

Research Articles Relevant Studies

Buczak and Guven [16]

Fan et al. [32]
Hu, Liao and Vemuri [33]
Bivens et al. [34]
Kruegel et al. [35]
Shon and Moon [36]
Tajbakhsh, Rahmati and Mirzaei [37]
Amor, Benferhat and Elouedi [38]

Khraisat et al. [31]

Chen, Hsu and Shen [39]
Adebowale, Idowu and Amarachi [40]
Thaseen and Kumar [41]
Ustebay, Turgut and Aydin [42]

Source: Prepared by the authors.

Fan et al. [32] used a rule-making inductive learning 
technique called RIPPER (Repeated Incremental 
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Pruning to Produce Error Reduction). The authors 
developed an artificial anomaly generator (attacks) 
to improve the generalization ability of the classifier. 
The 1998 DARPA database was used, obtaining a 
recall of 94%, with a FPR of 2%. Still on the same 
basis, Hu, Liao and Vemuri [33] used a variation of 
the support vector machines, called RSVM (Robust 
Support Vector Machine). This technique obtains an 
average of discriminant hyperplanes, smoothing 
the classification frontier, in addition to obtaining 
the regularization parameter and the classifier 
automatically. Good performance was obtained even 
in the presence of noise (although some training base 
labels are incorrect): 75% recall without false alarms, 
and 100% recall with FRP of 3%.

Bivens et al. [34] used SOM (Self-Organizing Map) 
to learn the normal behavior of traffic, together 
with MLP, to classify intrusions on the DARPA 1999 
basis. The authors sought to classify attacks into 
different categories and reported having obtained 
100% of TNR (True Negative Rate) and FPR of 76%. 
This information is somewhat inconsistent, since a 
TNR of 100% implies a FPR equal to zero. In fact, 
what the authors call FPR is the proportion of attacks 
misclassified in another type of attack. On the same 
basis, Kruegel et al. [35] used Bayesian networks, 
obtaining a FPR slightly greater than 0.2% and a recall 
of 100%. On the other hand, Shon and Moon [36] 
used an anomaly detection technique called Enhanced 
SVM to detect attacks in the 1999 DARPA database. 
This technique was derived from One-Class SVM and 
Soft-Margin SVM. For a more realistic application, 
the base imbalance was increased, consisting of 1% to 
1.5% of attacks and 98.5% to 99% of normal traffic. 
A false negative rate (FNR) of 27.27% was obtained, 
with a FPR of 10.2%. Although the recall was not 
directly provided, it is possible to derive it from the 
FNR, being, therefore, 72.73%.

Tajbakhsh, Rahmati, and Mirzaei [37] used 
Fuzzy Association Rule Mining to find patterns in 
the relationships of the 1999 KDD base attributes. 
The article highlights some benefits of the technique, 
such as the creation of humanly interpretable rules; 
however, it obtained a FPR of 13% to a recall of 

100%. Still on the same basis, Amor, Benferhat and 
Elouedi  [38] used the Naive Bayes (NB) algorithm, 
reporting a recall of 89% and a TNR of 98%. Although 
FPR has not been reported, it can be inferred, based 
on TNR, that it is 2%.

Chen, Hsu and Shen [39] extracted system call 
data from the 1998 DARPA database, coding it with 
the tf-idf (term frequency – inverse document frequency) 
method, to then train an SVM classifier. A 100% recall 
was obtained with FPR of 8.53%.

Adebowale, Idowu and Amarachi [40] used SVM, 
MLP, NB and Decision Trees (DT) for the detection of 
intrusion in the NSL-KDD base, obtaining the accuracies 
of 97.3%, 95.8%, 89.6% and 99.6%, respectively. 
The author used Weka 3.6.7 (Waikato Environment for 
Knowledge Analysis), a software developed in Java by the 
University of Waikato, New Zealand, which incorporates 
various ML techniques. It was not informed if the 
hyperparameters of the models were the default values, 
or if there was any adjustment to obtain such accuracy. 
These were raised via 10-fold cross-validation on the 
“full NSL-KDD” base. Although the NSL-KDD base 
is provided in three sets, 20%  training (only twenty 
percent of the samples in the training set), training 
and testing, the author does not clarify what the 
“full NSL-KDD” is. One possibility, therefore, is that 
he joined the training and testing parts on a single 
basis and applied cross-validation, only to train and 
evaluate the models performance (and not to adjust 
hyperparameters). Accuracies obtained were well 
above those raised by Tavallaee et al. [19], who were the 
creators of the NSL-KDD base. Probably, the reason for 
this was that, in this last article, the training base used 
was 20% of the training, and the accuracy was raised 
in the test set. Adebowale, Idowu and Amarachi  [40] 
also provided the detection and FPR indexes: the SVM 
obtained a recall of 95.9% at an FPR of 1.4%; the MLP, 
NB and DT obtained, respectively, a recall of 95.9% at 
an FPR of 4.4%, a recall of 87.7% at an FPR of 8.8%, 
and a recall of 99.6% at an FPR of 0.4%.

Thaseen and Kumar [41] used the NSL-KDD base 
to test all tree-based classifiers contained in the Weka 
software, namely: ADTree, C4.5, J48graft, LADTree, 
NBTree, RandomTree, RandomForest and REPTree. 
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A preprocessing was performed in the database, 
where the continuous attributes were discretized 
by a supervised attribute filtering technique called 
Discretize. In addition, there was a reduction from 
41 to only 8 attributes, obtained via CFS (Correlation 
Feature Selection) analysis. This is a method of selecting 
attributes that favors those with higher correlation 
with the output variable and, at the same time, 
lower correlation with the other attributes. Although 
there was no adjustment of hyperparameters, 
overall the classifiers obtained high accuracy in the 
test set. NBTree was the one that obtained the best 
performance with a recall of 97.8% to an FPR of 4.8%.

Ustebay, Turgut and Aydin [42] obtained a 
considerable reduction in the attributes of CIC-IDS 
2017 database examples, using the recursive elimination 
of attributes with the Random Forest (RF) algorithm. 
Thus, the total number of attributes was reduced from 
81 to only four, selected according to their importance. 
The authors raised a relevant point by stating that the 
attributes Flow_ID, Source_IP, Destination_IP, Timestamp 
and External_IP were not used in the training, that is, 
none of them were present in the four selected. 
This is an indication that the classifier may perform 
reasonably closely when applied to an actual network, 
as such attributes are specific to the CIC-IDS 2017 
base and should not be considered in the classification 
task. However, there  was no critical analysis of how 
general the meaning of each of the four selected 
attributes is, i.e., whether they remain the same in real 
networks. After the selection of attributes, the base was 
partitioned into 80% for training and 20% for testing. 
Then, a three-layer MLP with activation functions of 
the ReLu type was used, with the exception of the 
output layer, whose activation function was Adaptive 
Moment Estimation. By analyzing the ROC curve, it is 
possible to infer an 18% FPR to a 100% recall.

There are also studies that used recurrent neural 
networks in the intrusion detection task. Le, Kim and 
Kim [43] used the sequence prediction algorithm LSTM 
(Long Short Term Memory) to perform the classification of 
attacks in DoS, Scan, U2R and R2L. The database used 
was KDD 1999, and the result obtained was a recall of 

98.95%, with 9.98% FPR. However, the authors do not 
detail the application method of the algorithm.

Xu et al. [44] performed a similar study to that 
of Le, Kim and Kim [43], but replacing the LSTM 
algorithm with a Recurrent Neural Network of 
sequence prediction called GRU (Gated Recurrent 
Units). The authors suggested that GRU is superior 
to LSTM to classify attacks, and exemplified such 
comparison through an isolated application of both 
algorithms in the KDD 1999 and NSL-KDD databases. 
In both bases, GRU was actually superior to LSTM, 
although there is no theoretical support to generalize 
such superiority in other applications. In  addition, 
such algorithms were used in conjunction with a MLP 
Neural Network. The best results, obtained with the 
GRU, were a recall of 99.42%, with a FPR of 0.05%, 
for the KDD 1999 base. In the case of the NSL-KDD 
database, the recall was 99.31%, with a FPR of 0.84%. 
Although Le, Kim and Kim [43] have been cited in 
the bibliographic references of Xu et al.  [44], at no 
time do the authors emphasize the fact they obtained 
an extremely reduced FPR compared to the first 
study. In addition, again, there is no detailing of 
the methodology for algorithm application, where the 
sequences of attributes used could be presented, 
since it is a sequential prediction algorithm.

Papamartzivanos [45] developed a rule-inducing 
methodology based on a combination of genetic 
algorithms (GA) and decision trees. This method, 
called Dendron, aims to evolve a population of 
decision trees, resulting in a set of rules for detection 
and classification of attacks. According to the author, 
this  methodology allows the development of a 
signature-based IDS with a balanced performance, 
i.e., with similar accuracy in all classes (including 
the rarest) in which network traffic is classified. 
Another advantage of this method is that, as it used 
decision trees, the rules generated for classification 
are humanly intelligible, facilitating decision 
making by experts in relation to countermeasures. 
The model was tested in the KDD 1999, NSL-KDD 
and UNSW-NB15 databases, obtaining, respectively, 
the following performance metrics: recall of 98.24%, 
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with an FPR of 0.75%; recall of 95.97%, with an FPR 
of 1.08%; and recall of 63.76%, with an FPR of 2.61%.

Still in this article, Papamartzivanos [45] based 
the study on a methodology developed by Raina et al. 
[46] called STL (Self-Taught Learning), with the 
objective of making IDS self-adaptive, allowing it 
to maintain performance even in the occurrence 
of significant changes in the environment where it 
operates. These changes can have different causes, 
such as the insertion and removal of network assets, 
including IoT equipment, software updates and the 
emergence of new attacks. Therefore, unlike common 
(static) signature IDS, there is no need for manual 
updates to adapt to these changes. To demonstrate 
this capability, the author trained an IDS on an 
initial base containing 10% of normal traffic from 
the 1999 KDD base and a small portion of attacks 
from each class of the same base. The  algorithm 
used was a DSAN network (Deep Sparse Autoencoder 
Network) in  conjunction with Softmax regression. 
The  remainder of the 1999 KDD database was 
used to generate 100 different environments 
through random sampling. Each environment 
could contain, or not contain, classes or instances 
belonging to the initial base; therefore, depending 
on these differences, a given environment could be 
little or very distinct from the initial base. Thus, 
starting from the trained IDS, performance data 
were obtained in these varied environments in two 
ways: the first, keeping the IDS static, i.e., without 
changing it after the initial training; and the second, 
using STL to test the ability of the classifier to adapt 
to changes. The static IDS obtained, on average 
(considering 100 different environments), a recall 
of 38.54%, well below 60.34%, which was obtained 
by the self-adaptive IDS. A discordant aspect in this 
study is that the experiment was conducted in an 
ML-based IDS, using DSAN and Softmax, and the 
author argues that this technique allows for making 
a signature-based IDS self-adaptive.

Stefanova [47] developed an Intrusion Detection and 
Prevention Systems (IDPS), which has two layers: the first, 
responsible for performing the detection through ML, 
and the second, responsible for actively preventing the 

detected attack, through Reinforcement Learning. 
In this case, the author applies an approximation of 
Q-learning in the context of Game Theory, where the 
attacker and the defender (of the data network) 
participate in the same game whose solution is an 
optimal balance point, from  the point of view of 
defense. The database used was NSL-KDD. Regarding 
the first layer, there was a selection of attributes using 
information gain, reducing them from 41 to 30. 
The classification was performed by a RF, obtaining 
an FPR of approximately 0.16% and a recall of 99.9%. 
These values were obtained by inspection of the ROC 
curve present in the study.

6.2. Studies focused on reducing FPR

The following studies addressed the problem 
of FPR, which is one of the main obstacles in the 
implementation of an IDS in real networks, especially 
in those with high traffic density.

Subba, Biswas and Karmakar [48] proposed 
a method of reducing the FPR in signature IDS, 
whose main idea is to scan all assets belonging to 
the local network to be protected and to list all 
existing vulnerabilities, creating a “vulnerability 
profile”. Thus, all alarms related to attacks exploiting 
vulnerabilities that do not exist in this profile are 
discarded, considerably reducing the FPR, without 
impacting the recall. The  experiment used the 
Snort IDS, whose signature database was in the 
VRT-certified (Vulnerability Research Team) Snort V2.8 
version, in the default configuration, with all 
signatures enabled. Initially, performance data of the 
IDS Snort were collected in the DARPA 1999 database 
and, after that, the proposed technique was applied 
to minimize FPR. The author did not make clear 
how much FPR was minimized. On the other hand, 
he reported that, in the case of critical vulnerabilities, 
the accuracy of the detector increased from 83.24% to 
97.85%, without changing the recall, which remained 
at 37.47%. In the case of non-critical vulnerabilities, 
the accuracy increased from 71.31% to 95.56%, 
with a small degradation in recall (from  35.67% to 
32.43%). Thus, since the accuracy improved without 
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significantly changing the recall, one may say there 
was a decrease in the FPR.

Another article that also used Snort to study the 
false positive problem was Tjhai et al. [49]. In this 
case, IDS has been installed to monitor inbound and 
outbound traffic on the University of Plymouth (UK) 
web server. One of the problems with this approach is 
that only events that generated alarms were analyzed. 
This means there was no knowledge about the number 
of true or false negatives. Thus, it was agreed to call 
the True Positive Rate (TPR) the proportion of true 
alarms in relation to the total amount of alarms. In fact, 
this ratio denotes the precision of the IDS, not the TPR. 
Similarly, the proportion of false alarms in relation to the 
total number of alarms was conventionally called FPR, 
which, in fact, is the complement of precision. Despite 
this, the data presented were sufficient to show the 
extent of the problem of false positives, since these were 
considerably more numerous in relation to true alarms, 
in this case, in an approximate proportion of 24:1. 
Another aspect presented was a third category of alarms 
(in addition to true and false positive), called irrelevant 
positive, which, in this article (and in Subba, Biswas and 
Karmakar [48]), was included in the category of false 
positive. An irrelevant positive is an attack known to be 
unsuccessful, as it exploits vulnerabilities that do not exist 
in the network in question. For example, an attack that 
exploits a particular Windows OS specific vulnerability 
is an irrelevant positive if all machines connected to 
the network only run Linux OS. In summary, the vast 
majority of false alarms were noticed to be generated 
by three types of signatures. Thus, through the analysis 
of an expert, adjustments were made to the rules 
related to these signatures, resulting in a decrease in 
the proportion of false positives (in  relation to true 
positives) from 95.5% to 86.8%.

Zohrevand and Glässer [50] analyzed several 
studies aimed at decreasing FPR of anomaly-based 
IDSs to acceptable levels. According to the authors, 
considerable attention has been given only to 
obtaining a model trained in anomaly detection, 
neglecting aspects related to the analysis of decisions 
made by these models, especially analyses aimed at 
mitigating false alarms, such as the “anomaly score”, 

which measures the level of difference regarding 
normal events, and  adjustment of the decision 
threshold. Thus, different ways of computing 
the anomaly score were presented, addressing 
probabilities, correlations and similarities between 
anomalies. Unfortunately, the survey did not present 
numerical data for comparison purposes.

6.3. Studies with a focus on model explainability

In this section, studies related to the explainability 
of algorithms applied in cyberattack detection will be 
presented. Usually, in this case, there are two most 
common approaches: a broad analysis of the attributes, 
where the most important ones are shown in general, 
and a more specific analysis, where, for  a given 
classification (or group of classifications), the attributes 
that most influenced it are verified. In  addition, 
performance data is no longer as relevant as in the 
studies cited in subsection  6.1. Thus, studies on 
explainability are more focused on the interpretation of 
attributes and how reasonable is the importance given 
to them by the algorithm in a given classification task. 
Marino, Wickramasinghe and Manic [30] analyzed 
examples misclassified by the model through a method 
called Adversarial Approach. The idea of this technique 
is to verify the smallest possible change in attributes 
necessary to correct a wrong classification. This method 
works for any type of model (linear, neural network, 
SVM, etc.) as long as the loss function – typically the 
cross-entropy for the classification case – has a gradient 
defined in relation to the input attributes. One should 
note that a hacker can use this same method to do the 
opposite, i.e., to determine which is the smallest change 
in the attributes of an attack (which has been detected) 
necessary for the model to consider it as legitimate 
traffic. However, there are correlations between 
attack attributes that impose restrictions capable of 
preventing changes independently. Thus, the smallest 
theoretical change can result in an unfeasible attack, 
since the technique of Adversarial Approach disregards 
interdependence relations between attributes.

Figure  4 elucidates an Adversary Approach 
application referring to a particular case of the 
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NSL-KDD database. These are the normal (legitimate) 
traffic samples wrongly classified as DoS by an already 
trained neural network model, with an accuracy of 
95.5%. On the vertical axis, there are the attributes, 
and on the horizontal axis, the minimum values on 
average that should be subtracted from these attributes 
so the model would correctly classify these samples. 
This means that, by making such minimal changes in 
attributes, samples erroneously classified as DoS would 
be classified correctly in normal traffic. As a result, 
one can explain the wrong classification. One may see 
that a relatively high number of connections occurred 
for the same host (count) and for the same destination 
address (dst_host_count), and these connections had 
a  short duration (duration). In addition, there were 
few operations performed as root on these connections 
(num_root), as well as a low percentage of samples that 
were able to log in successfully (logged_in, is_guest_login). 
These characteristics are common in denial-of-service 
attacks, hence the reason for misclassification. It would 
be up to the analyst to verify if there was a label error 
at the base, or if there was only a coincidence, or even 
whether there is any logical reason for records labeled 
as normal to have such attributes.

duration
count

dst_host_count
num_root
logged_in

is_guest_login
dst_host_diff_srv_rate

diff_srv_rate
dst_host_same_src_port_rate

srv_count
dst_host_srv_count
dsrt_diff_host_rate

hot

-0,5 0,0 0,5
Fig. 4 – Normal samples misclassified as DoS. Source: [30].

Reyes et al. [51] used ML in the detection of 
intrusion in Wi-Fi networks, constant in the AWID2 
base. Detection occurs in two stages: the first, 
through the RF, classifying the events in normal, 
flood, and  personification/injection; and the second 
stage separates the personification of the injection, 

via NB. This model was conceived as a consequence of 
a previous study, where the authors, when classifying 
the attacks in a single stage, realized that many samples 
of the personification class were classified as injection 
and vice versa. Considering only the task of detecting 
the first stage, that is, classifying it as normal or attack, 
the proposed model obtained an accuracy of 99.41%, 
a recall of 94.1% and an FPR of 0.13%. Additionally, 
the authors dedicated a section to the analysis of 
attributes using the SHAP library (SHapley Additive 
exPlanations) [52], which offers a variety of tools for 
analysis of global and local explainability of the model, 
including graphically. However, this study does not 
present a domain explanation, i.e., the meaning of 
each attribute (or, at least, the main ones) and whether 
or not the behavior of the model is coherent, clarified 
by explainability techniques. Despite this, the authors 
limited themselves to citing which attributes positively 
or negatively impact the classification of a given label. 
However, a more in-depth analysis of the coherence 
of these impacts would be necessary, which is only 
possible with an understanding of the meaning of 
the attributes involved.

Wang et al. [53] also used SHAP to explain the 
decisions of an IDS, in addition to claiming pioneering 
in the application of this technique of explainability 
in intrusion detection. The NSL-KDD database was 
used to train two distinct neural network models: 
one-against-all and multiclass, which obtained, 
respectively: 80.6% accuracy, 80.6% recall and 19.4% 
FPR; 80.3%  accuracy, 80.3% recall and 19.7% FPR. 
In  these models, a local explainability analysis was 
made regarding DoS attacks of the Neptune type, 
which attempts to saturate a server by sending a high 
number of SYN packets on all ports. These attacks 
therefore have a high rate of connections with SYN 
error and, using local SHAP analysis, it  was found 
the one-against-all and multiclass models classified 
Neptune attacks in DoS with, on  average, 93% and 
89% certainty, respectively. However, the  attributes 
that guided this classification were quite different. 
In  fact, the one-against-all model used more 
reasonable attributes and directly related to Neptune. 
Such attributes indicated high SYN connection error 
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rates, demonstrating that this feature was primarily 
responsible for the classification. The  multiclass 
model did not predominantly use attributes related 
to this aspect of SYN error. Therefore, the authors 
concluded that the multiclass model does not provide 
consistent reasons for an expert’s confidence in the 
results. On  the other hand, there was no critical 
analysis of the attributes that guided the classification 
made by the multiclass model, even though they were 
not directly related to Neptune. A global analysis of 
the importance of attributes using SHAP was also 
presented. Figure 5 shows 20 of the 41 most important 
attributes for DoS classification for the one-against-all 
model case. Each line in the figure contains an attribute 
and all examples of the test set in the form of points, 
whose color varies from blue to red, representing the 
lowest and highest values of the attribute, respectively. 
The  location of the points on the horizontal axis 
denotes how much the respective attribute contributed 
for or against the classification in DoS.

wrong_fragment
service_ecr_i

dst_host_serror_rate
srv_serror_rate

root_shell
serror_rate

protocol_type_icmp
srv_count

hot
flag_S0
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dst_host_same_src_port_rate
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same_srv_rate
dst_host_srv_diff_host_rate

protocol_type_udp

logged_in
dst_host_count

dst_host_rerror_rate
dst_host_diff_srv_rate

Fig. 5 – 20 most relevant attributes in the DoS classification by the 
one-vs-all model. Source: [53].

Table  2 lists the four most relevant attributes 
of Figure  5 with DoS-type attacks, demonstrating 
that, in fact, such attributes are quite pertinent to an 
effective DoS classification.

Tab. 2 – DoS attack types.

Type Description Attribute

Land This attack locks SunOS 4.1 by sending a masked TCP SYN packet, with the same source address as the destination.
srv_serror_rate
dst_host_serror_rateNeptune

Also known as SYN flood or half open attack, it floods web servers with masked TCP SYN packets, depleting memory. 
Consequently, new connections will be rejected until expiration of the time of these connections opened by 
the masked packages.

PoD Known as “Ping of Death,” this attack sends fragmented IP packets so that when they are rebuilt on the target host, they result 
in an IP packet over 65,535 bytes in size, which is the maximum allowed. This causes old operating systems to crash.

wrong_fragment
Teardrop This attack sends fragmented IP packets that are impossible to rebuild on the target host, because there are overlaps 

between the fragments, causing some operating systems to crash.

Smurf
This attack sends ICMP packets of the Echo Request type, known as ping, to all hosts present on the victim’s network, 
via broadcast. As the source address field of these packets was masked with the IP address of the victim, it receives an 
excessive amount of Echo Reply packets, coming in response from all hosts contained in the broadcast address.

service_ecr_i

Source: Adapted from [53].

A slightly different approach was presented 
in Mahdavifar and Ghorbani [54]. In this article, 
the authors initially trained a DNN neural network to 
detect cyberattacks and later derived from this network 
an expert model, called DeNNeS (Deep Embedded Neural 
Network Expert System). Expert models are defined as 
a computer program that performs a task typically 
performed by an expert person through if-then rules 
[55]. In this case, these rules were extracted from the 
DNN model, which is not interpretable, to compose the 
knowledge base of an expert system, which is interpretable.  

For  a formal definition of these rules, consider  
T: {X, y} → {(x (1), y (1)), (x (2), y (2)), …, (x (m), y (m))} a database 
with m examples (x(i); y(i)) where x(i) represents a vector of 
attributes of example i, and y(i) the label of the associated 
class. x(i) has n attributes xk

(i), as follows: x(i) = {x1
(i), x2

(i), 
…, xn

(i)}; and y(i) is an integer: y(i) ∈ ℤ.
Thus, a classification rule ri, with respect to (x(i);y(i)), 

is defined as ri: Pi → Qi, where the antecedent of the rule 
Pi is a combination of l < n attribute values {k1, k2, …, k1}:

P x x xi k
i

k
i

k
i
l

� � � �{ ... },( ) ( ) ( )
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And the consequence of the rule Qi = {y(i)} is 
the class label.

Thus, Mahdavifar and Ghorbani [54] developed 
extensions of the MIJ (MACIE’s Inference Justification) 
algorithm [55], in order to extract these rules from the 
DNN model. Different rules applied to the same sample 
may result in different classifications. Thus, to carry out 
the final classification based on rules, a voting system 
was established, considering all the rules applicable to 
the sample in question. In addition, the voting weight of 
each rule varies according to the strength of the rule (ηri), 
measured by the product of two factors: confidence (Cfri) 
and coverage (Crri), something somewhat analogous 
to the performance indicators precision and recall 
of classifier models. The first factor is equal to the 
proportion of examples that obey the rule completely 
in relation to all that obey the antecedent of the rule. 
The second is equal to the proportion of examples that 
obey the rule completely in relation to all that obey the 
consequent of the rule. Formally, we have:
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Two databases were used to apply this technique: 
Phishing Websites, from the University of California 
Irvine (UCI), and an Android malware database, 
collected through the Virustotal and Contagio Security 
Blog websites. On these bases, DNN, DeNNeS and 
classical ML algorithms were applied. DeNNeS obtained 
the second best performance, being very close to the 
DNN model, which obtained the best. In the Phishing 
Websites database, DeNNeS obtained an accuracy of 
97.5% and an FPR of 1.8%, surpassing another rule 
extraction technique known as JRip, in  addition to 
also surpassing other ML techniques (RF, SVM, KNN 
and NB). In the malware base, DeNNeS achieved 
an accuracy of 95.8% and an FPR of 8%; likewise, 
it surpassed JRip and other ML techniques.

6.4. Comparison between related studies

Table  3 presents the performance data of the 
studies contained in subsection 6.1. As some studies 
in subsection  6.3 also provided performance data 
[51, 53, 54], they were included at the end of this 
table. The  purpose of this comparison of results 
is to show that, in general, FPR is not negligible, 
and  may become an important problem in cases of 
high and unbalanced traffic in favor of legitimate 
events. In addition, there is a very large variation of 
these values, including in studies that used the same 
database. As practically all the articles addressed do 
not provide in detail the methodology and all the data 
necessary for the replication of the experiment, there is 
no way to guarantee a completely fair comparison.

Tab. 3 – Performance obtained in intrusion detection articles 
using ML.

Article Database Technique Recall 
(%)

FPR 
(%)

Accu-
racy (%)

Fan et al. [32] DARPA 
1998 RIPPER 94 2 -

Hu, Liao and Vemu-
ri [33]

DARPA 
1998 RSVM 100 3 -

Bivens et al.[34] DARPA 
1999

SOM/
MLP - 76 -

Kruegel et al. [35] DARPA 
1999

Bayesian 
Networks 100 0.2 -

Shon and Moon [36] DARPA 
1999

Improved 
SVM 72.73 10.2 -

Tajbakhsh, Rahmati 
and Mirzaei [37]

KDD 
1999

Fuzzy 
Rules 100 13 -

Amor, Benferhat 
and Elouedi [38]

KDD 
1999 NB 89 2 -

Chen, Hsu and 
Shen [39]

DARPA 
1998 SVM 100 8.53 -

Adebowale, Idowu 
and Amarachi [40] NSL-KDD

SVM 95.9 1.4 97.3
MLP 95.9 4.4 95.8
NB 87.7 8.8 89.6
DT 99.6 0.4 99.6

Thaseen and Kumar 
[41] NSL-KDD NBTree 97.8 4.8 -

Ustebay, Turgut and 
Aydin [42]

CIC-IDS 
2017 MLP 100 18 -

Le, Kim and 
Kim [43]

KDD 
1999 LSTM 98.95 9.98 -

Xu et al. [44]
KDD 
1999 GRU/

MLP
99.42 0.05 -

NSL-KDD 99.31 0.84 -

Papamartzivanos [45]

KDD 
1999

GA/DT

98.24 0.75 98.85

NSL-KDD 95.97 1.08 97.55
UNSW- 
NB15 63.76 2.61 84.33

(continue...)
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Article Database Technique Recall 
(%)

FPR 
(%)

Accu-
racy (%)

Stefanova [47] NSL-KDD RF 99.9 0.16 -
Reyes et al. [51] AWID RF 94.1 0.13 99.41
Wang et al. [53]. NSL-KDD MLP 80.6 19.4 80.6
Mahdavifar and 
Ghorbani [54] Private DNN - 1.8 97.5

Source: Prepared by the authors.

Also in the Table 3, it is verified that some studies 
obtained an FPR of less than 1%, with a recall of 99%. 
This high performance occurred once in the 1999 
DARPA base, once in the 1999 KDD and three times 
in the NSL-KDD. The algorithms used were Bayesian 
Networks, DT, RF and a combination of GRU with 
MLP. Without doing an explainability analysis on 
these models, there is no way to know whether such 
performances will be maintained in real applications. 
Although the development of the methods and the 
performances achieved were of high relevance, 
one must also understand whether the attributes used 
for detection represent general relationships that are 
not restricted to the databases used.

Even if such performances are maintained in real 
applications, even the lowest FPR obtained, in this 
case, 0.05% for the 1999 KDD base, can generate a 
considerable amount of false positives in highly fast 
and unbalanced networks, i.e., with a much higher 

amount of benign traffic than those of malicious 
traffic. It should also be noted that the KDD 1999 
database, in addition to being old, has imperfections 
that facilitate the task of classifying the model [19]. 
In addition, the article that employed it [44] is much 
more recent than the date of its construction. This all 
supports overrated performance. On the other hand, 
one should see the 100% recall obtained in the 
CIC-IDS 2017 base was only possible with an FPR 
of 18%, well above 0.05%. In the UNSW-NB15 base, 
made available in 2015, the FPR was 2.61%, however, 
with a low recall (63.76%). Certainly, an adjustment 
in the detector threshold to increase this recall would 
cause a considerable increase in FPR. However, 
the research must be expanded to get more data about 
the performances obtained in more recent databases.

Table  4 summarizes the studies that presented 
other proposals, in addition to only obtaining a high 
performance index. With the exception of [45], contained 
in subsection 6.1, all studies in this table were extracted 
from subsection  6.2 and  6.3. Therefore, in general, 
the proposals of these studies are related to strategies 
to treat the occurrence of false positives, or to aspects 
of explainability, to obtain knowledge about which 
combinations of attribute values represent an attack, 
and whether there is coherence in this combination.

Table 4 – Articles on intrusion detection with objectives other than performance.

Article Databases Technique Objective Result

Papamartzivanos [45] KDD 1999 and 
NSL-KDD STL To develop a self-adaptive 

signature-based IDS.
The self-adapting IDS overcame static IDS 
in diverse environments.

Subba, Biswas and Karmakar [48] DARPA 1999 Vulnerability-based detec-
tion filtering.

Reduction of FPR in 
signature IDS.

Increased accuracy, without considerable 
degradation in recall.

Tjhai et al. [49] Private
Adjustments to IDS rules 
related to signatures that 
most generate false positives.

Reduction of FPR in 
signature IDS.

Decrease in the proportion of false 
positives (in relation to the total amount of 
alarms) from 95.5% to 86.8%.

Marino, Wickramasinghe 
and Manic [30] NSL-KDD Approach

Adversarial

Understanding the reason for 
false positive occurrence in a 
group of examples, of normal 
traffic, classified in DoS attack.

Obtained the attributes that most 
contributed to the erroneous classification, 
as well as how much such attributes should 
be changed for a correct classification.

Wang et al. [53] NSL-KDD SHAP

Check which attributes were 
most used by the model in clas-
sifying Neptune attacks in DoS, 
and whether there is consistency 
in this attribute choice.

Obtained the attributes that most contributed 
to Netpune’s classification in DoS. There was 
more coherence in the one-vs-all MLP model 
than in the multiclass MLP.

Mahdavifar and Ghorbani [54] Private Extraction of model rules
Replacing an uninterpretable 
DNN model with an 
interpretable one.

Obtained an expert model, by extracting 
rules from the DNN model, with little 
degradation in performance.

Source: Prepared by the authors.

Tab. 3 - Continuation



 RMCT • 17

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

7. Conclusion
ML has shown to be a promising research field 

in intrusion detection activity, due to the high 
performance obtained in simulated databases. 
However, there is no guarantee that the same level 
of performance will be achieved in real applications. 
Therefore, studies are needed to verify the level of 
similarity between simulated bases and real traffic. 
An obstacle that arises is the possibility of exposing 
sensitive information contained in this type of traffic 
by making it public for studies.

Another approach to analyze possibilities for 
maintaining performance in real applications would 

be through explainability. This technique allows us 
to verify the factors considered most important by 
complex ML models in the task of detecting intrusion. 
Thus, the study of these factors can conclude whether 
they really represent general characteristics, related 
to attacks, or benign traffic, regardless of whether the 
environment is real or simulated.

Finally, the problem of the occurrence of false 
positives was also verified, which can lead to the 
neglect of real attacks, camouflaged by an excessive 
amount of alarms. IDSs using ML are more 
susceptible to these circumstances, which in general 
has been an obstacle in the implementation of this 
technology in intrusion detection.

References
[1]	 ALYASIRI, H. Developing Efficient and Effective Intrusion Detection System using Evolutionary Computation. 

Thesis (Computer Science PhD) – University of York, Heslington, 2018.
[2]	 AKSU D.; AYDIN M. A. Detecting Port Scan Attempts with Comparative Analysis of Deep Learning and Support 

Vector Machine Algorithms. In International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism 
(IBIGDELFT). Piscataway: IEEE, 2018. p. 77–80. http://dx.doi.org/10.1109/IBIGDELFT.2018.8625370.

[3]	 HACKER tries to poison water supply of Florida city. BBC News, 8 fev. 2021. Available in: https://www.bbc.com/ 
news/world-us-canada-55989843. Accessed on: February 2021.

[4]	 INTERNATIONAL ORGANIZATION FOR STANDARDIZATION – ISO; INTERNATIONAL 
ELECTROTECHNICAL COMMISSION – IEC. Joint Technical Committee ISO/IEC JTC 1/SC 127. ISO/IEC 
27032:2012(en) Information technology — Security techniques — Guidelines for cybersecurity. Whashington, 
DC: ISO: IEC, 2012. Available in: https://www.iso.org/obp/ui/#iso:std:iso-iec:27032:ed-1:v1:en. Accessed on: 
Sept. 24, 2021.

[5]	 AMOROSO, E. G.; AMOROSO, M. E. From CIA to APT: An Introduction to Cyber Security. 2017.
[6]	 SCARFONE, K. A.; MELL, P. M. NIST Special Publication 800-94 – Guide to Intrusion Detection and Prevention 

Systems (IDPS): Recommendations of the National Institute of Standards and Technology. Gaithersburg, MD: 
National Institute of Standards and Technology, 2007.

[7]	 INDIAN CYBER SECURITY SOLUTIONS. Intrusion Detection System and its Detailed Working Function. 
ICSS, 2021. Available in: https://indiancybersecuritysolutions.com/intrusion-detection-system-working-function. 
Accessed on: Aug, 17, 2021.

[8]	 THOMA, M. Receiver Operating Characteristic (ROC) curve with False Positive Rate and True Positive Rate. 
Wikimedia Commons, 2018. Available in: https://commons.wikimedia.org/w/index.php?title=File:Roc-draft- 
xkcd-style.svg&oldid=491003296. Accessed on: Jan. 7, 2021.

[9]	 XIN, Y.; KONG, L.; LIU, Z.; CHEN, Y.; LI, Y.; ZHU, H. et al. Machine Learning and Deep Learning Methods 
for Cybersecurity. IEEE Access, v. 6, p. 35365–35381, 2018. https://doi.org/10.1109/ACCESS.2018.2836950.

[10]	KELLEHER, J. D.; NAMEE B. M.; D’ARCY, A. Fundamentals of Machine Learning for Predictive Data 
Analytics. 2. ed. Cambridge: MIT Press, 2020.

[11]	MUELLER, J. P.; MASSARON, L. Machine Learning for Dummies. Hoboken: John Wiley & Sons, 2016.
[12]	GHAHRAMANI, Z. Unsupervised Learning. In BOUSQUET, O.; VON LUXBURG, U.; RÄTSCH, G. (ed.). 

Advanced Lectures on Machine Learning. ML Summer Schools 2003. Amsterdam: Springer, 2003. https://doi.org/ 
10.1007/978-3-540-28650-9_5.

[13]	EVSUKOFF, A. G. Inteligência Computacional: Fundamentos e Aplicações. Rio de Janeiro: E-papers, 2020.



18 • RMCT

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

[14]	VANDERPLAS, J. Python Data Science Handbook: Essential Tools for Working with Data. Sebastopol: 
O’Reilly, 2016.

[15]	RASCHKA S.; MIRJALILI, V. Python Machine Learning: Machine Learning and Deep Learning with Python, 
scikit-learn, and TensorFlow. 2. ed. Birmingham: Packt Publishing, 2017.

[16]	BUCZAK, A. L.; GUVEN, E. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intru-
sion Detection. IEEE Communications Surveys & Tutorials, v. 18, n. 2, p. 1153–1176, 2016. https://doi.org/10.1109/
COMST.2015.2494502.

[17]	DARPA Intrusion Detection Evaluation Dataset. MIT Lincoln Laboratory, 1998/1999. Available in: 
https://www.ll.mit.edu/r-d/datasets. Accessed on: Aug. 27, 2021.

[18]	DATA – KDD Cup 1999: Computer network intrusion detection. SIGKDD, 1999. Available in:  
https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data. Accessed on: Aug. 27, 2021.

[19]	TAVALLAEE, M.; BAGHERI, E.; LU, W.; GHORBANI, A. A. A detailed analysis of the KDD CUP 99 data set. 
In IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA). Piscataway: 
IEEE, 2009. p. 1–6. https://doi.org/10.1109/CISDA.2009.5356528.

[20]	NSL-KDD DATASET. Canadian Institute for Cybersecurity. University of New Brunswick, 2009. Available in: 
https://www.unb.ca/cic/datasets/nsl.html. Accessed on: Aug. 27, 2021.

[21]	CTU-13 DATASET. A Labeled Dataset with Botnet, Normal and Background Traffic. Stratosphere Lab, 2011. 
Available in: https://www.stratosphereips.org/datasets-ctu13. Accessed on: Aug. 29, 2021.

[22]	DELPLACE, A.; HERMOSO S.; ANANDITA, K. Cyber Attack Detection thanks to Machine Learning 
Algorithms. arXiv preprint, 2001.06309, 2020.

[23]	DATASETS. Canadian Institute for Cibersecurity, University of New Brunswick, 2020. Available in: 
https://www.unb.ca/cic/datasets/index.html. Accessed on: Aug. 29, 2022.

[24]	WIRELESS DATASETS. University of the Aegean, 2021. Available in: https://icsdweb.aegean.gr/awid/download-
-dataset. Accessed on: Dec. 23, 2021.

[25]	KOLIAS, C.; KAMBOURAKIS, G.; STAVROU, A.; GRITZALIS, S. Intrusion Detection in 802.11 Networks: 
Empirical Evaluation of Threats and a Public Dataset. IEEE Communications Surveys & Tutorials, v. 18, n. 1, 
p. 184–208, 2016. https://doi.org/10.1109/COMST.2015.2402161.

[26]	MOUSTAFA, N.; SLAY, J. UNSW-NB15: a comprehensive data set for network intrusion detection systems 
(UNSW-NB15 network data set). In Military Communications and Information Systems Conference (MilCIS). 
Piscataway: IEEE, 2015. p. 1–6. https://doi.org/10.1109/MilCIS.2015.7348942.

[27]	GARCIA, S.; PARMISANO, A.; ERQUIAGA, M. J. IoT-23: A labeled dataset with malicious and benign IoT 
network traffic (Version 1.0.0). Zenodo. Stratosphere Lab, 2020. Available in: https://www.stratosphereips.org/ 
datasets-iot23. Accessed on: Dec. 23, 2021.

[28]	USB-IDS-1. Università degli Studi del Sannio di Benevento, 2021. Available in: http://idsdata.ding.unisannio.it/ 
datasets.html. Accessed on: Dec. 25, 2021.

[29]	NISIOTI, A.; MYLONAS, A.; YOO, P. D.; KATOS, V. From Intrusion Detection to Attacker Attribution: 
A Comprehensive Survey of Unsupervised Methods. IEEE Communications Surveys & Tutorials, v. 20, n. 4, 
p. 3369–3388, 2018. https://doi.org/10.1109/COMST.2018.2854724.

[30]	MARINO, D. L.; WICKRAMASINGHE, C. S.; MANIC, M. An Adversarial Approach for Explainable AI in 
Intrusion Detection Systems. In 44th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: 
IEEE, 2018. p. 3237–3243. https://doi.org/10.1109/IECON.2018.8591457.

[31]	KHRAISAT, A.; GONDAL, I.; VAMPLEW, P.; KAMRUZZAMAN, J. Survey of intrusion detection systems: 
techniques, datasets and challenges. Cybersecurity, v. 2, n. 20, 2019. https://doi.org/10.1186/s42400-019-0038-7.

[32]	FAN, W.; MILLER, M.; STOLFO, S. J.; LEE W.; CHAN, P. K. Using artificial anomalies to detect unknown 
and known network intrusions. In IEEE International Conference on Data Mining. Piscataway: IEEE, 2001. 
p. 123–130. https://doi.org/10.1109/ICDM.2001.989509.

[33]	HU, W.; LIAO, Y.; VEMURI, V. R. Robust Support Vector Machines for Anomaly Detection in Computer 
Security. In International Conference on Machine Learning and Applications (ICMLA). Piscataway: IEEE, 
2003. p. 168–174.

[34]	BIVENS, A.; PALAGIRI, C.; SMITH, R.; SZYMANSKI, B.; EMBRECHTS, M. Network-Based Intrusion 
Detection Using Neural Networks. In Intelligent Engineering Systems through Artificial Neural Networks 
ANNIE-2002, v. 12. New York: ASME Press, 2002. p. 579–584.



 RMCT • 19

VOL.39 Nº2 2022
https://doi.org/10.22491/IMECTA.10831.en

[35]	KRUEGEL, C.; MUTZ, D.; ROBERTSON, W.; VALEUR, F. Bayesian event classification for intrusion detection. 
In 19th Annual Computer Security Applications Conference (ACSAC). Piscataway: IEEE, 2003. p.  14–23. 
https://doi.org/10.1109/CSAC.2003.1254306.

[36]	SHON, T.; MOON, J. A hybrid machine learning approach to network anomaly detection. Information 
Sciences, v. 177, n. 18, p. 3799–3821, 2007. https://doi.org/10.1016/j.ins.2007.03.025.

[37]	TAJBAKHSH, A.; RAHMATI, M.; MIRZAEI, A. Intrusion detection using fuzzy association rules. Applied Soft 
Computing, v. 9, n. 2, p. 462–469, 2009. https://doi.org/10.1016/j.asoc.2008.06.001.

[38]	AMOR, N. B.; BENFERHAT S.; ELOUEDI, Z. Naive Bayes vs decision trees in intrusion detection systems. 
In Proceedings of the 2004 ACM Symposium on Applied Computing, Association for Computing Machinery. 
New York: ACM Digital Library, 2004. p. 420–424. https://doi.org/10.1145/967900.967989.

[39]	CHEN, W. H.; HSU, S. H.; SHEN, H. P. Application of SVM and ANN for intrusion detection. Computers & 
Operations Research, v. 32, n. 10, p. 2617–2634, 2005. https://doi.org/10.1016/j.cor.2004.03.019

[40]	ADEBOWALE, A.; IDOWU, S. A.; AMARACHI, A. A. Comparative study of selected data mining algorithms used 
for intrusion detection. International Journal of Soft Computing and Engineering, v. 3, n. 3, p. 237–241, 2013.

[41]	THASEEN, I. S.; KUMAR, C. A. An analysis of supervised tree based classifiers for intrusion detection system. 
In International Conference on Pattern Recognition, Informatics and Mobile Engineering. Piscataway: IEEE, 
2013. p. 294–299. https://doi.org/10.1109/ICPRIME.2013.6496489.

[42]	USTEBAY, S.; TURGUT, Z.; AYDIN, M. A. Intrusion Detection System with Recursive Feature Elimination by 
Using Random Forest and Deep Learning Classifier. In International Congress on Big Data, Deep Learning 
and Fighting Cyber Terrorism (IBIGDELFT). Piscataway: IEEE, 2018. p.  71–76. https://doi.org/10.1109/ 
IBIGDELFT.2018.8625318.

[43]	LE, T. T. H.; KIM, J.; KIM, H. An Effective Intrusion Detection Classifier Using Long Short-Term Memory with 
Gradient Descent Optimization. In International Conference on Platform Technology and Service (PlatCon). 
Piscataway: IEEE, 2017. p. 1–6. https://doi.org/10.1109/PlatCon.2017.7883684.

[44]	XU, C.; SHEN, J.; DU, X.; ZHANG, F. An Intrusion Detection System Using a Deep Neural Network with Gated 
Recurrent Units. IEEE Access, v. 6, p. 48697–48707, 2018. https://doi.org/10.1109/ACCESS.2018.2867564.

[45]	PAPAMARTZIVANOS, D. C. Advanced machine learning methods for network intrusion detection. 
Tese (Doutorado em Filosofia ) – University of the Aegean, Mitilene, 2019.

[46]	RAINA, R.; BATTLE, A.; LEE, H.; PACKER B.; NG, A. Y. Self-Taught Learning: Transfer Learning from Unlabeled 
Data. In Proceedings of the 24th International Conference on Machine Learning, Association for Computing 
Machinery. New York: ACM Digital Library, 2007. p. 759–766. https://doi.org/10.1145/1273496.1273592.

[47]	STEFANOVA, Z. S. Machine Learning Methods for Network Intrusion Detection and Intrusion Prevention 
Systems. Tese (Doutorado em Filosofia) – University of South Florida, Tampa, 2018.

[48]	SUBBA, B.; BISWAS, S.; KARMAKAR, S. False alarm reduction in signature-based IDS: game theory approach. 
Security and Communication Networks, v. 9, n. 18, p. 4863–4881, 2016. https://doi.org/10.1002/sec.1661.

[49]	TJHAI, G. C.; PAPADAKI, M.; FURNELL, S. M.; CLARKE, N. L. Investigating the problem of IDS false 
alarms: An experimental study using Snort. In Proceedings of The Ifip Tc 11 23rd International Information 
Security Conference, v. 278. Laxenburg: IFIP, 2008. p. 253–267.

[50]	ZOHREVAND, Z.; GLÄSSER, U. Should I Raise The Red Flag? A comprehensive survey of anomaly scoring 
methods toward mitigating false alarms. arXiv preprint, 1904.06646, 2019.

[51]	REYES, A. A.; VACA, F. D.; AGUAYO, G. A. C.; NIYAZ, Q.; DEVABHAKTUNI, V. A Machine Learning Based 
Two-Stage Wi-Fi Network Intrusion Detection System. Electronics, v. 9, n. 10, p. 1689, 2020. https://doi.org/10.3390/
electronics9101689.

[52]	LUNDBERG, S. M.; LEE, S. I. A Unified Approach to Interpreting Model Predictions. In 31th Conference on 
Neural Information Processing Systems. New York: ACM Digital Library, 2017. p. 4768–4777.

[53]	WANG, M.; ZHENG, K.; YANG, Y.; WANG, X. An Explainable Machine Learning Framework for Intrusion 
Detection Systems. IEEE Access, v. 8, p. 73127–73141, 2020. https://doi.org/10.1109/ACCESS.2020.2988359.

[54]	MAHDAVIFAR, S.; GHORBANI, A. A. DeNNeS: deep embedded neural network expert system for detecting 
cyber attacks. Neural Computing and Applications, v. 32, n. 18, p. 14753–14780, 2020. https://doi.org/10.1007/
s00521-020-04830-w.

[55]	GALLANT, S. I. Neural Network Learning and Expert Systems. 3. ed. Cambridge: MIT Press, 1995.


