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ABSTRACT: Surveillance of restricted areas and the respective 
maintenance of a security perimeter for installations sensitive to the 
presence of unauthorized persons is a necessary task in both civilian 
and military environments and can be conducted in different ways. 
This study presents a surveillance method of restricted areas in open 
environments via a remotely piloted aircraft system to autonomously 
detect and track mobile ground units entering a previously established 
perimeter to support a decision-making process regarding a possible 
intrusion event. The proposed solution has low acquisition and 
maintenance costs, easy deployment logistics, reduced risk to human 
lives, and decreased possible invasion detection time, in addition to 
being portable and ready to use.
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RESUMO: A vigilância de áreas restritas e a respectiva manutenção de 
um perímetro de segurança para instalações sensíveis à presença de pessoas 
não autorizadas é uma tarefa necessária tanto no meio civil quanto no meio 
militar e pode ser realizada de diversas formas. Este artigo apresenta um 
método de vigilância de áreas restritas em ambientes abertos que faz uso de 
um sistema de aeronaves remotamente pilotadas para detectar e rastrear, 
de forma autônoma, entidades terrestres móveis que adentrem um perímetro 
previamente estabelecido, de forma a apoiar um processo de tomada de 
decisão em relação a um possível evento de invasão. A solução proposta 
possui baixo custo aquisitivo e de manutenção, logística de implantação 
facilitada, redução do risco a vidas humanas e redução do tempo de 
percepção de uma possível invasão, além de ser portátil e de pronto emprego.

PALAVRAS-CHAVE: SARP. Robótica. Vigilância.
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1. Introduction

Surveillance of restricted areas consists of 
controlling access to areas sensitive to the 
presence of humans, animals, vehicles or 

other mobile ground units (MGUs). External areas 
without proper closure make this task even more 
challenging. A classic solution to this problem is 
human patrolling with or without the aid of vehicles, 
enabling the detection of attackers as soon as they 
enter a patrolman’s view.

However, the number of patrol officers required 
to shorten the detection time during persistent 
surveillance makes this type of solution impossible. 
Moreover, this approach can generate conflicts between 
invaders and patrol officers, putting human lives at risk. 

An alternative to human patrolling are closed-circuit 
television (CCTV), enabling surveillance by monitors.

CCTV reduces risks to lives and requires fewer 
human resources; however, the need for operators’ 
uninterrupted attention can lead to fatigue and to a 
subsequent failure [1]. Moreover, CCTV deployment 
requires adequate infrastructure and considerable 
installation time, inadequate for open areas and 
locations requiring temporary surveillance.

Mobile robots with sensory capability enhanced 
by cameras and computer vision algorithms can 
have relevant advantages to tackle invasive detection. 
However, the effectiveness of this method requires 
subproblems to be solved which constitute in itself 
a challenging subject, especially if the task is to be 
performed autonomously.
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Good quality is one of the challenges inherent in 
the use of images captured from cameras embedded in 
mobile robots, especially in attempting to independently 
detect moving objects in image sequences obtained from 
mobile cameras since both the background and the 
moving object move between frames. Studies [2, 3, 4] 
show different ways of dealing with this problem.

Another important issue is that image processing 
and computer vision require significant processing 
power and directly influence the response time of the 
whole system. The computational resources typically 
available on computers embedded in mobile robots 
are quite limited, most often demanding the transfer 
of processing to an external computer.

Computational resources tend to become even 
scarcer (or even non-existent) with small aerial mobile 
robots. Their load capacity is even more limited and 
may even require the transmission of images for 
processing on an external computer.

Despite the challenges mentioned, unmanned 
aerial vehicles (UAVs) are a type of mobile robot 
whose use is becoming increasingly common both 
in civilian and military applications. Military use 
can be interesting in tasks such as surveillance and 
patrolling [5], search and rescue [6], mapping [7], 
supply [8], and communication [9]. The most common 
civil applications include package transportation 
[10], image acquisition [11], entertainment [12], 
and precision agriculture [13].

Recently, the rapidly growing use of UAVs in 
various applications can be explained by the ease of 
access to previously inaccessible equipment, whether 
for geographical, technical or economic reasons. 
Research has improved the accuracy, miniaturization, 
response time, and robustness of UAV building 
components, in addition to their high market 
availability and increasingly reduced cost, fostering 
their use and construction.

Thus, this study shows a relevant method of 
detecting and tracking mobile ground units in 
a restricted area previously defined by a human 
operator. As a differential, our method proposes the 
use of a remotely piloted aircraft of the quadcopter 
type specially designed for this purpose, which acts 

autonomously with a fully embedded processing 
software inherent to the fulfillment of its mission.

Following this introduction, Section 2 shows a brief 
theoretical foundation of the issues related to the 
intrinsic subproblems of the general solution. Section 3 
covers some of the research related to this. Next, Section 
4 exposes the formalization of the problem and the 
proposed solution, whereas Section 5 details the UAV 
prototype built for the actual experiments. Section 6 
shows the diagrams and algorithms of the embedded 
software. Section 7 discusses some experimental results 
and Section 8 concludes with some considerations.

2. Theoretical framework
This section shows key concepts in mobile robotics, 

remotely piloted aircraft systems, and computer vision. 
The following subsections individually approach 
these matters.

2.1 Mobile robotics

Most techniques used in the proposed solution 
are relevant to mobile robotics. [14] synthesized the 
concepts we show. Mobile robots can be terrestrial, 
aquatic, and aerial. We adopted the latter as a 
platform to develop the proposed solution. Aerial 
robots can be fixed-wing, rotary-wing, or lighter than 
air. The  solution proposed uses quadcopters, which 
are multi-rotor rotary aerial robots.

The degree of autonomy a mobile robot has 
to perform a task depends on its embedded 
computational, sensory, and actuation equipment. 
Environment perception is carried out by processing 
the data from sensors such as cameras and sonars. 
Some sensors may also be required for specific 
applications, such as CO2 sensors or the camera itself.

Sensors can be classified under various criteria. 
Field of view corresponds to the coverage width of 
the sensor, usually expressed in degrees. Range is 
the maximum distance for reliable measurement. 
Accuracy indicates how correct the reading 
provided is against an exact reference. Repeatability, 
also  treated as sensor accuracy, refers to the supply 
of the same measure under a given condition. 
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Resolution  corresponds to the smallest possible 
difference between two sensor values.

Energy consumption concerns the current and 
voltage required by the sensor, also an important 
attribute. Reliability refers to its independence 
from external factors such as voltage variation. 
Computational complexity corresponds to the 
amount of computational processing required to 
process the data. Finally, physical dimensions, 
namely size and weight, are very relevant attributes 
for systems embedded in robots with space and 
payload restrictions.

Mobile robots can use multiple sensors to estimate 
their location relative to a fixed reference. Sensing 
errors and noise are common and can be treated 
with stochastic methods and representations based 
on belief levels. The Kalman filter is widely used 
to merge sensor data, promoting normalization 
or weighted combination [15]. Discretization of a 
continuous workspace can reduce the dimensionality 
of the problem, facilitating computation [16].

2.2 Remotely piloted aircraft systems

This subsection presents operational and 
constructive concepts of quadcopter-type UAVs, which 
this study treats as a type of aerial robot.

Fig. 1 - Basic operation of a quadcopter-type UAV.

Figure 1 shows a layout with the devices used during 
UAV operation and the types of messages exchanged 
between devices. The UAV must have a linked 

transmitter radio control (RCT) to enable its manual 
control. Optionally, the RCT can receive telemetry 
data such as battery voltage, altitude, and more. 
The center of the device is a real-time video stream 
preview screen transmitted by an embedded camera. 
ECS is the ground control station corresponding to 
the computer from which the mission operator can 
set high-level and emergency operational commands 
such as landing or route resetting.

Figure 2 shows a schema with the main UAV 
components. Light gray elements are exterior to 
the vehicle. Yellow elements are not mandatory, but 
desirable. Dashed rectangles represent logical element 
groups, which do not necessarily mean they belong to 
the same printed circuit board. Arrows indicate the 
direction of data flow between the components.

The flight controller processing unit, represented 
by the central dashed rectangle, receives sensor data 
to compute the position and orientation of the UAV 
relative to a fixed reference. The processing unit is 
dedicated to running the aircraft control software. 
The right dotted rectangle represents the components 
used for specific applications, whereas the left one 
corresponds to the components used in first-person 
piloting mode, in which the operator views, in real 
time, images captured by an embedded camera.

Fig. 2 - Basic organization of the internal and external components 
of a quadcopter.

The propulsion system of a quadcopter consists 
of four engines equipped with propellers and 
controlled by electronic speed controllers (ESC). 
The correct combination of engine and propeller and 
ESC and battery is critical to defining flight quality. 
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The rotation differential between the four propellers 
defines the dynamic behavior of the aircraft. Figure 3 
shows some maneuvers according to the propeller 
rotation differential.

Fig. 3 - Basic quadcopter flight dynamics depending on the 
rotation of each propeller. a) ascent; b) front pitch; c) right roll; 
and d) right yaw.

2.3 Computational vision

According to [17], computer vision is an area of study 
aiming to understand a 3D scene from 2D images, 
imitating human vision via software and hardware. 
Image quality is fundamental for this. It is common 
to implement vision systems into UAVs for tasks such 
as independently moving object (IMO) detection 
and tracking, position estimation, navigation, 
obstacle detection, autonomous landing, stabilized 
flight, attitude determination, 3D reconstruction, 
among others [18-25].

The extraction of image characteristics is essential 
to create descriptors representing specific image 
points. The atomicity of a descriptor, as well as 
its robustness to lighting and rotation variations, 
for  example, enable operators to track it over 
multiple frames and get information about moving 
image parts.

There are different algorithms for computing 
point descriptors, and descriptor robustness usually 
incurs a longer processing time. Each algorithm has 
its advantages and disadvantages, and its performance 
is better or worse according to the situation.

IMO detection consists of segmenting images from 
a sequence in the background and mobile plane. 
IMOs stay on the mobile plane, whereas the action 
scenario is in the background. The main techniques 
for detecting IMOs are frame differentiation, dense or 
sparse optical flow, and background subtraction [26].

Frame differentiation considers the subtraction 
of two consecutive frames in a sequence. It has the 

advantage of being simple and fast, but the IOM is not 
completely detected as only part of it moves between 
two contiguous frames. In optical flow, vectors are 
plotted between corresponding descriptors from two 
subsequent frames and, according to the magnitude 
of these vectors, it is possible to have a sense of the 
regions of the image which are in motion, but without 
obtaining a complete IMO outline.

In background subtraction, an initial frame 
is maintained as a reference and is updated with 
each new frame, maintaining a viable background 
representation. With each subsequent frame, 
a subtraction is made, and the difference is considered 
an IOM. This method identifies IMOs clearly but 
requires proper updating of the reference frame. 
Tracing an IOM consists of recording its position over 
time and continuously identifying the corresponding 
objects between the frames in a sequence. Temporary 
problems, such as object occlusion, can be circumvented 
using prediction techniques.

3. Literature review
These studies [27-29], as this one, are some of 

the several cases in which the authors propose their 
own UAVs during the development of their research. 
Table 1 shows the main characteristics of the aircraft 
built in the referenced studies. The available flight 
mode column refers to the most sophisticated flight 
mode offered by the UAV.

Tab. 1 - Comparison of the main characteristics of aerial vehicle 
used in the referenced studies.

Ref. Total
Weight (g)

Flight Time 
(min)

Available Flight 
Mode

Total Cost 
(US$)

[26] 4000 11 Stabilized NA

[27] 1400 5-10 Stabilized 300.00

[28] 2250 30 Automatic 1500.00

The Introduction mentioned several UAV 
applications, some of which may require IMO 
detection and/or screening. The following paragraphs 
briefly describe some studies which used UAVs to 
detect and/or track MGUs for some purpose. In this 



 RMCT • 73

VOL.39 Nº1 2022
https://doi.org/10.22491/IMECTA.10848.en

study, the term MGU is used in place of IOM to better 
characterize the target object.

Article [30], sharing three authors with this study, 
proposed a system to control several small UAVs to 
survey a predefined area. Its proposed solution aims to 
control the positioning and displacement of an aircraft 
within the target surveillance area, which is decomposed 
into hexagonal cells with different coverage priorities. 
A priority-based UAV distribution policy defines the 
visitation frequency of each cell. This solution enables 
a single operator to command a fleet of autonomous 
UAVs using a high-level user interface, dispensing the 
need for their individual manual control.

More recent studies tackle the problem of the 
persistent surveillance of restricted areas using UAV 
swarms. Article [31] is a theoretical study which 
mathematically analyzes the data collection capacity 
of a UAV swarm flying in circular, straight, and 
diagonal formations over an area decomposed into 
square cells, maintaining a uniform update rate of 
each cell assessed by the UAV.

The authors of study [32] combine the use of UAVs 
with unmanned land vehicles to cover urban areas, 
meeting the demands some locations have of detailed 
visual sensing. The proposed solution discretizes the 
UAV operation space into cubes and the land vehicle 
one into squares projected on the ground from 
these cubes. A path for cooperative vehicle action 
to solve the problem of coverage with restrictions is 
modeled as an optimization problem. Their solution 
uses a hybrid approach to genetic and estimation of 
distribution algorithms.

In [33], the authors show a solution using a swarm 
of commercial UAVs for semi-autonomous aerial 
surveillance. An operator manually defines UAV 
circular trajectories according to a method preventing 
the overlap of images captured by embedded 
cameras. These images are then continuously sent 
to a ground station which processes these images to 
detect objects of interest (which may not necessarily 
move). UAV  amount and coverage frequency may 
vary depending on the size of the area.

Border surveillance via drones and a stationary 
ground sensor network is the subject of study [34]. 

A ground sensor network composed of probes and 
infrared sensors is used to detect movements in the 
environment. When it is detected, a UAV is triggered 
to go to the location and capture images. Such images 
are transmitted to a ground station that processes the 
images to find people.

For some applications, studies have addressed 
the establishment of UAV positioning policies. 
The authors of [35] propose a framework to position 
UAVs equipped with the proper devices to maximize 
the connectivity of backhaul networks, connecting 
backbones to peripheral networks. [36] establishes a 
method for positioning UAVs to provide a wireless 
network for users in a previously defined square 
ground area, seeking to maximize the number of 
users covered by the network, with the possibility of 
clustering user groups and employing multiple UAVs. 
The study by [37] is similar to [36] in its use of UAVs to 
provide connectivity and communication services for 
ground users. The authors of [37] focus on establishing 
an optimal operating altitude, considering the physics 
of signal propagation and soil roughness.

4. Problem formalization
Figure 4 shows a high-level 3D representation of a 

simplified surveillance scenario in which a car enters 
a restricted area which includes a building. The walls 
around it define the restricted area. At the top is a 
surveillance UAV with a camera pointed down, 
continuously processing captured images. The camera 
field of view is represented by the semitransparent 
pyramidal volume between the UAV and the ground. 
Note that the field of view covers the entire circle 
representing the restricted area. On the road which 
gives access to the building, there is a vehicle within 
the restricted area, representing an MGU.

4.1 Preliminary considerations

In short, the elements relevant to the problem 
are the restricted area to be monitored, mobile 
ground units, UAVs, and their workspace. Thus, 
be W an external environment comprising a set of 
georeferenced coordinates in which each w Wi ∈  is 
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a point on the ground given by [latitude, longitude, 
altitude]. The restricted area A to be guarded is a 
manually defined subset of W whose outline C is a 
closed polygon of coordinates ci  A.

Fig. 4 - 3D representation of a surveillance scenario.

The restricted area A is decomposed into nd 
cells and represented by the set D d i ni d� � �{ | }0  
whose elements assume the coordinate values of cell 
centroids. The environment W can contain a set of 
mobile ground units (MGUs), which can enter the 
restricted area at any time. Thus, E e i ni e� � �{ | },0  
whose elements correspond to centroid coordinates.

Initially, all MGUs are outside the restricted area, 
i.e.,� � � �e E e W Ai i, ( ). When in this condition, 
MGUs are represented only to formulate the problem 
and have no corresponding elements in the concrete 
solution. The moment the MGU enters the restricted 
area, it becomes part of a subset of E known as Edet

t , 
corresponding to detected MGUs.

If UVA is a VTOL-type (vertical takeoff and 
landing) stationary UVA with a starting position 
P D0 � , i.e., the UVA is within a cell of D but not 
necessarily in its centroid, the UVA must be able to 
hover in a previously calculated position Phover whose 
ground projection belongs to A and, from that 

position, be able to perform a full visual coverage of 
A via a camera.

Image imgt, of dimensions [w, h], obtained from the 
camera embedded in the UVA at a time t, is represented 
by img p x y x w y ht t� �� � � � �{ ( , ) | , },3 0 0  and each 
element pt(x, y) of the image stores the RGB values of the 
pixel in coordinate (x, y) of the image captured at time 
t. The set formed by the sequence of images captured 
by the camera in the UVA is represented by Img.

4.2 Detection formalization 

Detecting invasive MGUs requires individual 
processing of the frames captured by the embedded 
camera in the UVA. According to the formalization in 
the previous subsection, the set of images captured by 
the embedded camera in the UVA is defined by Img. 
With each image imgt  Img, at t tcurr=1,.., ,  in which 
t is a temporal sequential index and tcurr is the most 
current index of this sequence, the detection function 
fdet must return, as output, a vector of ndet

t  pairs 
( , )

det det
x yi i
t t  corresponding to the coordinates of the 

pixels p x yest
t t t

i i( , )
det det

 in the centroids ndet
t  of the IMOs 

detected in imgt, at i ndet
t=1,..., .  Thus, the problem of 

detection can be represented by Equation 1 below:

FO PSI Xd i i
i

NSites
� �

�� ( ( ) , ),1
11 � �t tcurr

(1)

In which Et is the set of MGUs detected in time 
t, ndet

t  is the number of IMOs detected at instant t, 
and tcurr is the temporal sequential index of the most 
current image of sequence Img. Since the result of the 
detection function is a vector of centroids based on 
pixel coordinates, an additional function is necessary 
to convert these coordinates into georeferenced 
values, given that the navigation mechanism of the 
UAV is based on a satellite location sensor.

Thus, fgps(x, y, lat, long, alt, cam, heading) is the 
function converting a coordinate (x, y) of a pixel from 
an image Img into a georeferenced coordinate, in which 
(lat, long, alt) are the georeferenced coordinates of the 
UVA at the time of image capture, cam corresponds to 
the intrinsic parameters of the camera, and heading 
is the orientation of the vehicle relative to the north. 
Note that IOM is the name given to independently 
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moving objects detected in the image (which could be 
later characterized as MGUs).

4.3 Tracking formalization

To track invasive MGUs, it is necessary to find the 
correspondence between detected MGUs over time. 
Thus, let ftrack be the function capable of determining 
the matches between Edet

t  and Edet
t�1. For this, as input, 

ftrack continuously receives the result of f img Et t
det
t

det ( ) =  at 
t > 1, the entities detected at the previous instant Edet

t−1,  
and the set of traces of each entity in Edet

t�1, named Rt�1.
As output, the function must return a set Edet

t  
containing the updated set of invasive MGUs and 
the updated trace data set Rt for each MGU set Edet

t . 
The tracking problem, thus, can be represented by 
Equation 2 below:

Xd i NAAA
i

NSites ( ) ,�
�� 1 (2)

E R f E E R i n
t t

det
t t

track det
t

det
t t

det
t

curr

, ( , , )| ,1 1 1
2

In which Edet
t  corresponds to the coordinates of all 

MGUs belonging to set Edet at instant Rt; , the vectors 
of position coordinates over time for the whole 
e E x ydet
i

det
t

e
t

e
t

det
i

det
i∈ ;( , )  at position edet

i  at instant t; and R
e
t

det
i , 

the set edet
i  of positions from instant 0 to instant t.

Note that maintaining the set Edet
t  updated 

corresponds to keeping only the MGUs present in 
restricted area A at instant , i.e., ftrack must maintain a 
policy of including and excluding MGUs on Edet

t  since 
some MGUs Edet

t�1 may be absent from A at moment t and 
some MGUs Edet

t  may have just entered the restricted 
area and will be unmatched in Edet

t�1.

4.4 Restrictions, assumptions, and additional 
requirements

We considered that UAV had an automatic 
navigation capability by georeferenced waypoints. 
Because the system relies on RGB-type cameras, 
it is critical that the operation scenario has adequate 
lighting. We also considered that the terrain is flat and 
that the restricted area  is stationary, i.e., its location 
and perimeter remain constant throughout the 

mission. The trajectory between the UAV take-off 
point and surveillance position ignores obstacles 
with height higher than the operating altitude of 
the aircraft. The UAV is of type VTOL and able to 
communicate with a ground control station, which, 
in turn, is the interface with the mission operator.

5. Proposed Solution
Figure 5 shows a simplified view of the Unmanned 

Aerial Vehicle System (UAVS) architecture used 
in the proposed solution. It consists of a stationary 
UAV and a ground control station communicating 
via a two-way channel. The UAV detects and tracks 
invasive MGUs using only the devices embedded in 
it, continuously transmitting MGU (position, speed, 
and  size) and telemetry data (battery, position, tilt, 
and sensor status) to ECS.

Complementing Figure 5, Figure 6 shows UAVS 
behavior throughout a mission, highlighting the 
high-level tasks involved in solving the problem and 
the sequence in which such tasks are performed. 
The dashed rectangle corresponds to the coordinates 
of the vertices which define a polygon corresponding 
to the perimeter of the restricted area provided by the 
mission operator as input data. The system then starts 
by computing the optimal position and orientation 
(pose) of the UAV to maintain full visual coverage of 
the restricted area.

With the computed pose, the UAV takes off 
and navigates until reaching it. Then, the MGU 
detection algorithm starts obtaining a frame of 
reference and processing the subsequent frames in 
search of changes which characterize the presence 
of IMOs in the image. With the detection results, 
the tracking algorithm maintains a temporal record 
of the positioning of the detected MGUs. Concluding 
a cycle, MGU static and dynamic information is 
transmitted to the ECS.

If the mission is to proceed, a new detection-
trace-transmission cycle begins. The mission can be 
deliberately completed by the operator or automatically 
upon the UAV state. The following subsections provide 
details of the high-level tasks in this subsection.
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5.1 UAV positioning

For the greater usefulness of the captured images, 
the UAV should hover over the restricted area A to 
adjust its field of view so the restricted area includes 
as many pixels as possible and maximize its pixel/
area ratio. Thus, MGUs entering A will occupy more 
pixels, making detection easier. Since the camera 
sensor is rectangular to maximize the pixel/area ratio, 
a rectangle Rect is computed, whose minimum area 
surrounds the entire restricted area A.

Controladora
de Voo

Software
Embarcado

Sensores e
Atuadores

Câmera
RGB

Link de
Comunicação

Painel de
Informações

Link de
Comunicação

Estação de Controle em Solo

ARP Estacionária Computador

Operador

GUI

Fig. 5 - Simplified UAVS architecture applied in the solution.

Coordenadas 
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área restrita

Fim
Sim

Início

Computar pose 
ideal a ARP
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posição ideal

Detectar ETMs 
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Transmitir dados 
das ETMs à ECS

Rastrear ETMs 
detectadas em A

Pousar ARP
na origem

Continuar
Missão?

Não

Fig. 6 - High-level view of the tasks performed by the UAVS.

Then, the UAV must match the latitude and longitude 
of the UAV center and the  orientation must be defined 
so both the longest side of the computed rectangle 
and the captured image are parallel and their centers 
coincide. After computing the UAV pose, it is necessary 
to estimate the altitude at which the aircraft must hover, 
so its camera has full coverage of the restricted area. 
In this case, we considered that the parameters related 
to the camera lens are previously known.

According to Equation 3 [38], the dimensions 
( , )W L  of the coverage area of a camera gliding to the 
ground at an altitude h can be estimated as follows:

� f p
f

f fc
T r t

t
K T r t Q t

�

�

�

�
��

�

�
�� � � �

( , )
( , ) ( )2

L h�
�

�
�

�

�
�2

2
* tan �

(3)

In which, α corresponds to the vertical opening 
angle of the camera and β, to its horizontal opening. 
Thus, the minimum altitude hmin allowed for the 
UAV camera to fully cover A can be derived from 
Equation 3 as follows:

T t e T b e Q t dtf
at att

( ) ( )� � � �� ��

� � �0
0

T a
Q
c f

b
c ff p f p

( ) , ; ;0 1 10� � �
� �

(4)

f T
Q
K

Rc
f

fL
� � 0 2

8
;

These calculations disregard horizontal and 
vertical displacements caused by environmental 
weather and errors in the UAV sensors. Thus, 
we recommend a safety margin to avoid the possible 
lack of coverage of regions near the edges of A. 
Figure 7 shows an image of a fictitious restricted 
area to be guarded.

In Figure 7, the polygon with dark green solid 
edges corresponds to restricted area A. The rectangle 
with yellow solid edges corresponds to the minimum 
rectangle surrounding the restricted area. The rectangle 
with blue dotted edges corresponds to the area covered 
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by the UAV camera when the aircraft is in the previously 
computed pose, represented by the white circle with a 
red border. For comparison, the larger rectangle with 
yellow dotted edges corresponds to the image captured 
by the UAV camera when the aircraft is hovering in 
the horizontal position of the computed pose, but at a 
higher altitude and with a different orientation.

Fig. 7 - Fictitious restricted area to be monitored and 
representations of the scope of the camera in different situations.

The rectangle with red edges within the restricted 
area corresponds to a random object of interest. 
This object occupies about 2.3% of the blue dotted 
rectangle and 1.4% of the yellow dotted rectangle, i.e., 
in the image captured in the ideal pose, the object 
would have approximately 64% more I, making it 
more “visible” in the detection phase of MGUs.

5.2 Image stabilization

Vibrations caused by engines and movement 
caused by weather or sensor inaccuracy are among the 
causes of problems in images captured using UAVs. 
Maintaining the alignment of frames captured by 
the camera is crucial for IMO detection algorithms. 
This study uses a hybrid solution based on mechanical 
stabilization with a motorized gimbal and software 
stabilization. The gimbal is triggered for angular 
scrolling and pitching movements. In [39], the same 
authors of this article developed this technique.

Figure 8 shows an example of alignment that 
creates invalid edges: in (a), the frame of reference, (b), 
the frame to be aligned, and (c), the frame corrected by 
geometric transformation and the black edges, which 
emerged as a side effect. We should mention that the 
size of the black edges increases proportionally to the 
movements of the camera. Thus, maintaining UAV 
stability is of fundamental importance.

Fig. 8 - Generation of invalid edges caused by geometric 
transformations applied to correct unwanted camera movements. 
(a) frame of reference; (b) frame to be aligned; (c) corrected table.

5.3 MGU detection and tracking

MGU detection and tracking considers that the 
optical axis of the embedded camera has the same 
direction and sense as the gravity vector, thanks to its 
image stabilization feature. Thus, the images captured 
from the ground are coplanar, facilitating MGU 
detection. The diagram in Figure 10 provides an 
overview of the MGU detection and tracking algorithm.

A detection and tracking cycle starts from the video 
stream of the  embedded camera. This cycle repeats for 
each processed frame. First, a frame is captured to serve 
as a frame of reference. Each new frame, represented 
in the diagram by the block with the current frame 
label, is first aligned so the image of the current frame 
coincides with the reference image. Then, the current 
frame is subtracted from the frame of reference and the 
result is submitted to a threshold which will determine 
whether each resulting pixel should be disregarded (0) 
or considered (1), generating a binary image.

Contiguous binary pixel groupings form binary 
large objects (blobs). Blobs larger than a second 
threshold are maintained, whereas smaller ones are 
considered outliers and are removed from the image. 
Finally, blobs are properly segmented from the 
background and stored in the current blob collection. 
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These blobs are the candidates for detected MGUs, 
beginning the tracking phase.

Fig. 9 - Overview of the MGU detection and tracking algorithm.

In the first cycle, blobs will automatically constitute 
the collection of existing blobs. In the next cycle, 
current blobs are compared with those computed in 
the previous cycle to search for matches between blob 
collections. Thus, operators can maintain a history of 
blob positions over time.

In view of UAV frame processing rate, camera 
resolution, and altitude, blobs move by a few pixels 
between one frame and another. Thus, searching for a 
match consists of finding a neighboring blob with the 
same physical (aspect and area ratio) and behavioral 
(direction and speed) characteristics as the current 
frame blob. Thus, the search radius is a parameter 
influencing performance. 

A new blob is any current blob which does not 
have a corresponding existing blob, i.e., one which 
has just entered the restricted area. Current blobs 
with matching existing blobs will have their tracking 
information and data updated. If any existing blob 
has no match, it may have left the restricted area or is 
experiencing occlusion.

Occlusion is handled via a prediction policy 
in which the next position of the occluded blob is 
computed according to its dynamic behavior, based 
on its position history. The prediction policy can 
delete a blob or update its tracking data with the new 

estimated position. Deletion can occur if the blob 
position indicates it has left the restricted area or if it is 
unmatched for a while above an adjustable threshold.

5.4 The built UAV

To conduct experiments on the intrinsic parts 
of the proposed UAVS, an UAV was built, whose 
characteristics meet all the premises of our problem. 
Our methodology evolved from a previous project, 
published in [40]. The UAV uses highly commercially 
available shelf components, which were carefully 
selected from empirical, individual, and integrated 
computerized tests.

The UAV built has a 330mm wingspan, 
a hovering range of more than 40 minutes, and a 
final weight of 1080g, whereas its predecessor 
had a 450mm wingspan, flew up to 23 minutes, 
and  weighed 1.5kg. Evolutions in its sensors were 
also relevant. The autonomy gain is mainly due to 
the lithium-ion cell battery built specifically for this 
vehicle. We should also mention that the gimbal 
used for mechanical stabilization was built using 
shelf components. Figure  9 shows a real photo of 
the UAV built for this study.

Fig. 10 – 330mm UAV built to play the role of stationary UAV.

For navigation and control, a library has been 
developed with high-level functions for UAV 
movement, which is available in [41], based on 
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another, of lower abstraction, called DroneKit [42], 
which uses a specific protocol, called MavLink [43], 
to communicate with small UAVs.

6. Experimental data
Due to the complexity of creating a real-world 

scenario to fully validate UAVS in a surveillance 
mission, the intrinsic parts of the system were 
individually validated. Real and computer-simulated 
flight tests were performed to validate the built 
UAV. Computer simulation used a Software in the 
Loop (SITL) architecture made available by the 
team developing ArduPilot [44], the flight controller 
firmware. Figure 11 shows the results.

(a)

(b)

Fig. 11 – Trajectories performed by the SITL-simulated UAV 
(blue dash) and the UAV in real flight (orange dash). (a) 2D 
visualization; (b) 3D display.

The graphs in Figure 12 show the difference in 
latitude, longitude, and altitude between the actual 
flight experiments and SITL. The difference between 
the results is negligible for this type of application 
and clearly shows that UAV navigation accuracy 
enables SITL simulation for the initial validation of 
navigation algorithms.

Fig. 12 - Latitude (a), longitude (b), and altitude (c) of the 
trajectories generated by SITL simulation (blue line) and by the 
UAV in real flight (orange line).

To validate the detection and tracking algorithm, 
a computer simulator was designed to generate MGU 
animations entering a restricted area, experiencing 
occlusions, and overlapping other MGUs. Figure 13 
shows screenshots of the detection and tracking 
algorithm in action. The first capture (a) shows a green 
region representing the terrain; brown rectangles, 
occluded regions; and a white rectangle, an MGU. 
The second capture (b) shows a binary image with an 
MGU highlighted from the background. The third 
capture (c) shows the MGUs trails over time, including 
predicted positions.
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The simulator also generates groundtruth data. 
The graph in Figure 14 shows some qualitative 
detection and tracking results by comparing tracking 
data generated by the algorithm with groundtruth 
data generated by the simulator.

(a) (b) (c)
Fig. 13 - Result of the tracking algorithm applied to the animation 
generated by the simulator. (a) original image; (b) image subtracted 
from the background; (c) computed tracking.

In the caption shown at the top of the graph 
in Figure 14, “GT” means “groundtruth;” “tra,” 
“tracking;” “N.O.,” “no occlusion;” and “W.O.,” “with 
occlusion.” The graph has eight lines representing 
trajectories traveled by the respective MGUs along 
the image, four generated by groundtruth data 
(thick lines) and four computed by the detection and 
tracing algorithm (narrow lines). Each generating 
point of such lines refers to the MGU centroid which 
traveled the trajectory represented by the line. 
The groundtruth-related line has been widened to 
facilitate comparison, as the chart has many overlaps.

The first experiment, shown in Figure 14 by gray 
and yellow lines, corresponds to an MGU moving 
in a straight line without undergoing occlusion. 
The yellow line suffers small variations but fails to 
leave the central region of the groundtruth line. 
The second experiment, shown in Figure 14 by 
the black and light blue lines, corresponds to an 
MGU moving in a straight line and suffering some 
occlusions. Computed tracking was also close to the 
groundtruth one, except for the highlighted region 
in which an occlusion occurred, which required a 
more intense use of the prediction mechanism.

The third experiment, shown in Figure 14 by the 
red and white lines, simulated an MGU on a path 
with curves without suffering occlusion. Tracking 
was also very close to groundtruth. The fourth and 
final experiment, shown in Figure 14 by the blue and 
green lines, simulated an MGU on a trajectory with 

curves and suffering occlusions at some points. In this 
fourth experiment, the computed trail was close to 
groundtruth, but it highlights a passage in which an 
occlusion caused a slight deviation in the trajectory 
estimated by the prediction policy.

To validate runtime, 16 animations were generated 
simulating groups of 20 to 500 MGUs simultaneously 
travelling in the scene. The animations were captured 
at three different video resolutions (1024×768, 
800×600, and 640×480), representing different 
camera resolutions. Figure 15 shows the relation 
between the number of MGUs and the frame rate per 
second of each tested resolution. Dotted lines are just to 
show a linear trend in the complexity of the algorithm.

Fig. 14 - Comparison between groundtruth trajectories and tracks 
computed by the detection and tracking algorithm.

Fig. 15 – Influence of the number of MGUs and video resolution 
on the rate of frames processed per second.

The experiments were conducted on a Raspberry 
Pi 4B with 4GB of RAM, whose temperature was 
maintained between 41 and 45 degrees Celsius. 
An expected observation is that the best case occurs 
with 20 MGUs, whereas the worst case, with 500 
MGUs. For the 640×480 video resolution, the frame 
rate per second ranged from 17.1 (worst case) to 40.7 
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(best  case), intaking a processing time per frame 
of 58ms and 24ms, respectively. At 800×600 video 
resolution, the frame rate per second ranged from 
14.1 to 27.1, demanding 71ms and 37ms per frame, 
respectively. With the 1024×768 resolution, the frame 
rate per second varied between 10.1 and 16.5, 
demanding 99ms and 61ms per frame, respectively.

Note that the higher the video resolution, the lower 
the impact of the number of MGUs on processing 
time, indicating that the algorithm spends most of 
its time performing image processing and less time 
managing the MGUs in the scene. The linear trend 
and number of MGUs in the scene impacts runtime 
less than the other involved variables contribute to 
facilitate the dimensioning of the computational 
resources necessary for some specific application 
requiring, for example, surveillance of extensive areas 
and the use of higher resolution cameras.

Finally, we should mention that, in qualitative 
terms, the minimum size for detectable MGUs 
varies according to the number of pixels they 
occupy in the image and their contrast in relation 
to the background (soil). The proposed detection 
and tracking algorithm proved capable of tracking 
MGUs occupying at least four pixels in simulation-
generated videos. However, in visually noisy real 
environments, the minimum size of detectable 
MGUs tends to increase as does noise intensity, 
and the establishment of this trend requires more 
specific studies.

7. Final remarks
This study showed a UAVS to autonomously detect 

MGUs in restricted areas in open environments, 

designed for situations in which conventional 
surveillance means, such as CCTV and human 
patrolling, are unfeasible due to establishment time, 
available structure, cost, and operational coordination. 
The proposed solution can bring relevant advantages 
to these aspects and reduce the risk to human lives by 
requiring only one remote operator.

Regarding the UAV, the experimentally obtained 
results show the feasibility of the prototype built to 
meet the established premises. It is a low-cost portable 
platform whose operation and maintenance is easy 
and thus useful for various applications. As for the 
developed software, performance results show that 
algorithmic complexity enables fully embedded real-
time running without the need for transmitting 
images for external processing.

We should mention that the reduced flight time 
of portable quadcopter-type UAVs is an important 
restraint which would limit the useful time of 
the MGU detection system and, consequently, 
its feasibility. Some solutions can reduce this 
limitation. One possibility is using multiple UAVs to 
automatically replace stationary UAVs. Another is 
using power-tethered UAVs, as in [45]. A suggestion 
for future studies is the creation of an algorithm to 
determine MGU threat levels according to physical 
and behavioral characteristics such as its size, speed, 
movement pattern, and direction.
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