
ABSTRACT: Surveillance of restricted areas and the respective 
maintenance of a security perimeter for installations that are sensitive 
to the presence of unauthorized persons is a necessary task in both 
civilian and military environments and can be carried out in different 
ways. This article presents a method of surveillance of restricted areas 
in open environments that use a remotely piloted aircraft system to 
autonomously detect and track mobile terrestrial entities that enter a 
previously established perimeter to support a decision-making process 
regarding a possible intrusion event. The proposed solution has low 
acquisition and maintenance costs, easy deployment logistics, reduced 
risk to human lives, and reduced time to perceive a possible invasion, 
in addition to being portable and ready to use.
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RESUMO: A vigilância de áreas restritas e a respectiva manutenção de 
um perímetro de segurança para instalações sensíveis à presença de pessoas 
não autorizadas é uma tarefa necessária tanto no meio civil quanto no meio 
militar e pode ser realizada de diversas formas. Este artigo apresenta um 
método de vigilância de áreas restritas em ambientes abertos que faz uso de 
um sistema de aeronaves remotamente pilotadas para detectar e rastrear, de 
forma autônoma, entidades terrestres móveis que adentrem um perímetro 
previamente estabelecido, de forma a apoiar um processo de tomada de 
decisão em relação a um possível evento de invasão. A solução proposta possui 
baixo custo aquisitivo e de manutenção, logística de implantação facilitada, 
redução do risco a vidas humanas e redução do tempo de percepção de uma 
possível invasão, além de ser portátil e de pronto emprego.

PALAVRAS-CHAVE: SARP. Robótica. Vigilância.

1. Introduction

Surveillance of restricted areas consists of 
controlling access to areas sensitive to the 
presence of humans, animals, vehicles or 

other mobile ground units (MGUs). External areas 
without proper closure make this task even more 
challenging. A classic solution to this problem is 
human patrolling with or without the aid of vehicles, 
enabling the detection of attackers as soon as they 
enter a patrolman’s view.

However, the number of patrol officers required 
to shorten the detection time during persistent 
surveillance makes this type of solution impossible. 

Moreover, this approach can generate conflicts 
between invaders and patrol officers, putting human 
lives at risk. An alternative to human patrolling are 
closed-circuit television (CCTV), enabling surveillance 
by monitors.

CCTV reduces risks to lives and requires fewer 
human resources; however, the need for operators’ 
uninterrupted attention can lead to fatigue and to a 
subsequent failure [1]. Moreover, CCTV deployment 
requires adequate infrastructure and considerable 
installation time, inadequate for open areas and 
locations requiring temporary surveillance.

Mobile robots with sensory capability enhanced 
by cameras and computer vision algorithms can 
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have relevant advantages to tackle invasive detection. 
However, the effectiveness of this method requires 
subproblems to be solved which constitute in itself 
a challenging subject, especially if the task is to be 
performed autonomously.

Good quality is one of the challenges inherent 
in the use of images captured from cameras 
embedded in mobile robots, especially in attempting 
to independently detect moving objects in image 
sequences obtained from mobile cameras since both 
the background and the moving object move between 
frames. Studies [2, 3, 4] show different ways of dealing 
with this problem.

Another important issue is that image processing 
and computer vision require significant processing 
power and directly influence the response time of the 
whole system. The computational resources typically 
available on computers embedded in mobile robots 
are quite limited, most often demanding the transfer 
of processing to an external computer.

Computational resources tend to become even 
scarcer (or even non-existent) with small aerial mobile 
robots. Their load capacity is even more limited and 
may even require the transmission of images for 
processing on an external computer.

Despite the challenges mentioned, unmanned 
aerial vehicles (UAVs) are a type of mobile robot 
whose use is becoming increasingly common both 
in civilian and military applications. Military use 
can be interesting in tasks such as surveillance and 
patrolling [5], search and rescue [6], mapping [7], 
supply [8], and communication [9]. The most common 
civil applications include package transportation 
[10], image acquisition [11], entertainment [12], and 
precision agriculture [13].

Recently, the rapidly growing use of UAVs in 
various applications can be explained by the ease of 
access to previously inaccessible equipment, whether 
for geographical, technical or economic reasons. 
Research has improved the accuracy, miniaturization, 
response time, and robustness of UAV building 

components, in addition to their high market 
availability and increasingly reduced cost, fostering 
their use and construction.

Thus, this study shows a relevant method of 
detecting and tracking mobile ground units in 
a restricted area previously defined by a human 
operator. As a differential, our method proposes the 
use of a remotely piloted aircraft of the quadcopter 
type specially designed for this purpose, which acts 
autonomously with a fully embedded processing 
software inherent to the fulfillment of its mission.

Following this introduction, Section 2 shows a brief 
theoretical foundation of the issues related to the 
intrinsic subproblems of the general solution. Section 
3 covers some of the research related to this. Next, 
Section 4 exposes the formalization of the problem 
and the proposed solution, whereas Section 5 details 
the UAV prototype built for the actual experiments. 
Section 6 shows the diagrams and algorithms of 
the embedded software. Section 7 discusses some 
experimental results and Section 8 concludes with 
some considerations.

2. Theoretical framework
This section shows key concepts in mobile robotics, 

remotely piloted aircraft systems, and computer 
vision. The following subsections individually 
approach these matters.

2.1 Mobile robotics

Most techniques used in the proposed solution 
are relevant to mobile robotics. [14] synthesized the 
concepts we show. Mobile robots can be terrestrial, 
aquatic, and aerial. We adopted the latter as a platform 
to develop the proposed solution. Aerial robots can 
be fixed-wing, rotary-wing, or lighter than air. The 
solution proposed uses quadcopters, which are multi-
rotor rotary aerial robots.

The degree of autonomy a mobile robot has 
to perform a task depends on its embedded 
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computational, sensory, and actuation equipment. 
Environment perception is carried out by processing 
the data from sensors such as cameras and sonars. 
Some sensors may also be required for specific 
applications, such as CO2 sensors or the camera itself.

Sensors can be classified under various criteria. 
Field of view corresponds to the coverage width of 
the sensor, usually expressed in degrees. Range is 
the maximum distance for reliable measurement. 
Accuracy indicates how correct the reading provided 
is against an exact reference. Repeatability, also 
treated as sensor accuracy, refers to the supply of the 
same measure under a given condition. Resolution 
corresponds to the smallest possible difference 
between two sensor values.

Energy consumption concerns the current and 
voltage required by the sensor, also an important 
attribute. Reliability refers to its independence 
from external factors such as voltage variation. 
Computational complexity corresponds to the 
amount of computational processing required to 
process the data. Finally, physical dimensions, 
namely size and weight, are very relevant attributes 
for systems embedded in robots with space and 
payload restrictions.

Mobile robots can use multiple sensors to estimate 
their location relative to a fixed reference. Sensing 
errors and noise are common and can be treated 
with stochastic methods and representations based 
on belief levels. The Kalman filter is widely used 
to merge sensor data, promoting normalization 
or weighted combination [15]. Discretization of a 
continuous workspace can reduce the dimensionality 
of the problem, facilitating computation [16].

2.2 Remotely piloted aircraft systems

This subsection presents operational and 
constructive concepts of quadcopter-type UAVs, which 
this study treats as a type of aerial robot.

Figure 1 shows a layout with the devices used during 
UAV operation and the types of messages exchanged 
between devices. The UAV must have a linked 
transmitter radio control (RCT) to enable its manual 
control. Optionally, the RCT can receive telemetry 
data such as battery voltage, altitude, and more. 
The center of the device is a real-time video stream 
preview screen transmitted by an embedded camera. 
ECS is the ground control station corresponding to 
the computer from which the mission operator can 
set high-level and emergency operational commands 
such as landing or route resetting.

flowco
m

m
an

ds

com
m

ands

telem
etry te

le
m

et
ry

vi
de

o

Fig. 1 - Basic operation of a quadcopter-type UAV.

Figure 2 shows a schema with the main UAV 
components. Light gray elements are exterior to 
the vehicle. Yellow elements are not mandatory, but 
desirable. Dashed rectangles represent logical element 
groups, which do not necessarily mean they belong to 
the same printed circuit board. Arrows indicate the 
direction of data flow between the components.

The flight controller processing unit, represented 
by the central dashed rectangle, receives sensor data 
to compute the position and orientation of the UAV 
relative to a fixed reference. The processing unit is 
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dedicated to running the aircraft control software. 
The right dotted rectangle represents the components 
used for specific applications, whereas the left one 
corresponds to the components used in first-person 
piloting mode, in which the operator views, in real 
time, images captured by an embedded camera.
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Fig. 2 - Basic organization of the internal and external 
components of a quadcopter.

The propulsion system of a quadcopter consists 
of four engines equipped with propellers and 
controlled by electronic speed controllers (ESC). The 
correct combination of engine and propeller and 
ESC and battery is critical to defining flight quality. 
The rotation differential between the four propellers 
defines the dynamic behavior of the aircraft. Figure 3 
shows some maneuvers according to the propeller 
rotation differential.

2.3 Computational vision

According to [17], computer vision is an area of 
study aiming to understand a 3D scene from 2D 
images, imitating human vision via software and 
hardware. Image quality is fundamental for this. 
It is common to implement vision systems into 
UAVs for tasks such as independently moving object 
(IMO) detection and tracking, position estimation, 
navigation, obstacle detection, autonomous landing, 
stabilized flight, attitude determination, 3D 
reconstruction, among others [18-25].

Fig. 3 - Basic quadcopter flight dynamics depending on the 
rotation of each propeller. a) ascent; b) front pitch; c) right roll; 
and d) right yaw.

The extraction of image characteristics is 
essential to create descriptors representing specific 
image points. The atomicity of a descriptor, as well 
as its robustness to lighting and rotation variations, 
for example, enable operators to track it over 
multiple frames and get information about moving 
image parts.

There are different algorithms for computing 
point descriptors, and descriptor robustness usually 
incurs a longer processing time. Each algorithm has 
its advantages and disadvantages, and its performance 
is better or worse according to the situation.

IMO detection consists of segmenting images 
from a sequence in the background and mobile 
plane. IMOs stay on the mobile plane, whereas 
the action scenario is in the background. The 
main techniques for detecting IMOs are frame 
differentiation, dense or sparse optical flow, and 
background subtraction [26].

Frame differentiation considers the subtraction 
of two consecutive frames in a sequence. It has the 
advantage of being simple and fast, but the IOM is not 
completely detected as only part of it moves between 
two contiguous frames. In optical flow, vectors are 
plotted between corresponding descriptors from two 
subsequent frames and, according to the magnitude 
of these vectors, it is possible to have a sense of the 
regions of the image which are in motion, but without 
obtaining a complete IMO outline.

In background subtraction, an initial frame 
is maintained as a reference and is updated with 
each new frame, maintaining a viable background 
representation. With each subsequent frame, a 
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subtraction is made, and the difference is considered 
an IOM. This method identifies IMOs clearly but 
requires proper updating of the reference frame. 
Tracing an IOM consists of recording its position over 
time and continuously identifying the corresponding 
objects between the frames in a sequence. Temporary 
problems, such as object occlusion, can be circumvented 
using prediction techniques.

3. Literature review
These studies [27-29], as this one, are some of 

the several cases in which the authors propose their 
own UAVs during the development of their research. 
Table 1 shows the main characteristics of the aircraft 
built in the referenced studies. The available flight 
mode column refers to the most sophisticated flight 
mode offered by the UAV.

Table 1 - Comparison of the main characteristics of aerial 
vehicle used in the referenced studies.

Ref. Total  
Weight (g)

Flight Time 
(min)

Available Flight 
Mode

Total Cost 
(US$)

[26] 4000 11 Stabilized NA

[27] 1400 5-10 Stabilized 300.00

[28] 2250 30 Automatic 1500.00

The Introduction mentioned several UAV 
applications, some of which may require IMO 
detection and/or screening. The following paragraphs 
briefly describe some studies which used UAVs to 
detect and/or track MGUs for some purpose. In this 
study, the term MGU is used in place of IOM to better 
characterize the target object.

Article [30], sharing three authors with this study, 
proposed a system to control several small UAVs to 
survey a predefined area. Its proposed solution aims 
to control the positioning and displacement of an 
aircraft within the target surveillance area, which 
is decomposed into hexagonal cells with different 
coverage priorities. A priority-based UAV distribution 

policy defines the visitation frequency of each cell. 
This solution enables a single operator to command 
a fleet of autonomous UAVs using a high-level user 
interface, dispensing the need for their individual 
manual control.

More recent studies tackle the problem of the 
persistent surveillance of restricted areas using UAV 
swarms. Article [31] is a theoretical study which 
mathematically analyzes the data collection capacity 
of a UAV swarm flying in circular, straight, and 
diagonal formations over an area decomposed into 
square cells, maintaining a uniform update rate of 
each cell assessed by the UAV.

The authors of study [32] combine the use of UAVs 
with unmanned land vehicles to cover urban areas, 
meeting the demands some locations have of detailed 
visual sensing. The proposed solution discretizes the 
UAV operation space into cubes and the land vehicle 
one into squares projected on the ground from 
these cubes. A path for cooperative vehicle action 
to solve the problem of coverage with restrictions is 
modeled as an optimization problem. Their solution 
uses a hybrid approach to genetic and estimation of 
distribution algorithms.

In [33], the authors show a solution using a swarm 
of commercial UAVs for semi-autonomous aerial 
surveillance. An operator manually defines UAV 
circular trajectories according to a method preventing 
the overlap of images captured by embedded cameras. 
These images are then continuously sent to a ground 
station which processes these images to detect objects 
of interest (which may not necessarily move). UAV 
amount and coverage frequency may vary depending 
on the size of the area.

Border surveillance via drones and a stationary 
ground sensor network is the subject of study [34]. 
A ground sensor network composed of probes and 
infrared sensors is used to detect movements in the 
environment. When it is detected, a UAV is triggered 
to go to the location and capture images. Such images 
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are transmitted to a ground station that processes the 
images to find people.

For some applications, studies have addressed 
the establishment of UAV positioning policies. The 
authors of [35] propose a framework to position 
UAVs equipped with the proper devices to maximize 
the connectivity of backhaul networks, connecting 
backbones to peripheral networks. [36] establishes a 
method for positioning UAVs to provide a wireless 
network for users in a previously defined square 
ground area, seeking to maximize the number of 
users covered by the network, with the possibility of 
clustering user groups and employing multiple UAVs. 
The study by [37] is similar to [36] in its use of UAVs to 
provide connectivity and communication services for 
ground users. The authors of [37] focus on establishing 
an optimal operating altitude, considering the physics 
of signal propagation and soil roughness.

4. Problem formalization
Figure 4 shows a high-level 3D representation of a 

simplified surveillance scenario in which a car enters 
a restricted area which includes a building. The 
walls around it define the restricted area. At the top 
is a surveillance UAV with a camera pointed down, 
continuously processing captured images. The camera 
field of view is represented by the semitransparent 
pyramidal volume between the UAV and the ground. 
Note that the field of view covers the entire circle 
representing the restricted area. On the road which 
gives access to the building, there is a vehicle within 
the restricted area, representing an MGU.

4.1 Preliminary considerations

In short, the elements relevant to the problem are the 
restricted area to be monitored, mobile ground units, 
UAVs, and their workspace. Thus, be W an external 
environment comprising a set of georeferenced 
coordinates in which each 𝑤і∈W is a point on the 

ground given by [latitude,longitude,altitude]. The 
restricted area A to be guarded is a manually defined 
subset of W whose outline C is a closed polygon of 
coordinates cі∈A.

Fig. 4 - 3D representation of a surveillance scenario.

The restricted area A is decomposed into nd cells 
and represented by the set  
whose elements assume the coordinate values of 
cell centroids. The environment W can contain a 
set E of ne mobile ground units (MGUs), which 
can enter the restricted area A at any time. Thus, 

, whose elements correspond to 
centroid coordinates.

Initially, all MGUs are outside the restricted area, 
i.e., . When in this condition, 
MGUs are represented only to formulate the problem 
and have no corresponding elements in the concrete 
solution. The moment the MGU enters the restricted 
area, it becomes part of a subset of E known as Edet, 
corresponding to detected MGUs.

If UVA is a VTOL-type (vertical takeoff and landing) 
stationary UVA with a starting position P0∈D, i.e., 
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the UVA is within a cell of D but not necessarily in its 
centroid, the UVA must be able to hover in a previously 
calculated position Phover whose ground projection 
belongs to A and, from that position, be able to perform 
a full visual coverage of A via a camera.

Image imgt, of dimensions [𝑤, h], obtained from the 
camera embedded in the UVA at a time t, is represented 
by  
and each element  of the image stores the 
RGB values of the pixel in coordinate  of the 
image captured at time t. The set formed by the 
sequence of images captured by the camera in the 
UVA is represented by Img.

4.2 Detection formalization 

Detecting invasive MGUs requires individual 
processing of the frames captured by the embedded 
camera in the UVA. According to the formalization in 
the previous subsection, the set of images captured by 
the embedded camera in the UVA is defined by Img. 
With each image Imgt ∈ Img, at t = 1,..., tcurr, in which 
t is a temporal sequential index and tcurr is the most 
current index of this sequence, the detection function 
fdet must return, as output, a vector of  pairs 

 corresponding to the coordinates of the 
pixels  in the centroids  of the IMOs 
detected in imgt, at i = 1,..., . Thus, the problem of 
detection can be represented by Equation 1 below:

,
curr

imgt

tt
i detdetdet

t
det
t

i det
t

i
t

   (1)

in which  is the set of MGUs detected in time t, 
 is the number of IMOs detected at instant t, and 

tcurr is the temporal sequential index of the most 
current image of sequence Img. Since the result of the 
detection function is a vector of centroids based on 
pixel coordinates, an additional function is necessary 
to convert these coordinates into georeferenced 

values, given that the navigation mechanism of the 
UVA is based on a satellite location sensor.

Thus, fgps (x,y,lat,long,alt,cam,heading) is the 
function converting a coordinate (x,y) of a pixel from an 
image Img into a georeferenced coordinate, in which 
(lat,long,alt) are the georeferenced coordinates of the 
UVA at the time of image capture, cam corresponds to 
the intrinsic parameters of the camera, and heading 
is the orientation of the vehicle relative to the north. 
Note that IOM is the name given to independently 
moving objects detected in the image (which could be 
later characterized as MGUs).

4.3 Tracking formalization

To track invasive MGUs, it is necessary to find 
the correspondence between detected MGUs over 
time. Thus, let track  be the function capable of 
determining the matches between det

t
 and det

t 1. For 
this, as input, track  continuously receives the result of 

det
t

imgt
det
t

 at para t > 1, the entities detected 
at the previous instant det

t 1 and the set of traces of 
each entity in det

t 1, named t 1.
As output, the function must return a set det

t

containing the updated set of invasive MGUs and 
the updated trace data set t 1 for each MGU set det

t
. 

The tracking problem, thus, can be represented by 
Equation 2 below:

det track

curr

t
det det
t

det
t

t t

t t 1 t 1

det det det det

t t t t t ;eee i i i

 
(2)

In which det
t

 corresponds to the coordinates of 
all MGUs belonging to set det at instant t; t 1, the 
vectors of position coordinates over time for the whole 

det
idet

i
det
i

t t
det
t ; at position det

i  at instant t; and 

det
i

t , the set  det
i  of positions from instant 0 to instant t.

Note that maintaining the set det
t

 updated 
corresponds to keeping only the MGUs present in 
restricted area A at instant t, i.e., track must maintain 
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a policy of including and excluding MGUs on det
t  

since some MGUs det
t 1 may be absent from A at 

moment t and some MGUs det
t

 may have just entered 
the restricted area and will be unmatched in det

t 1.

4.4 Restrictions, assumptions, and additional 
requirements

We considered that UAV had an automatic 
navigation capability by georeferenced waypoints. 
Because the system relies on RGB-type cameras, it 
is critical that the operation scenario has adequate 
lighting. We also considered that the terrain is flat 
and that the restricted area A is stationary, i.e., its 
location and perimeter remain constant throughout 
the mission. The trajectory between the UAV take-
off point and surveillance position ignores obstacles 
with height higher than the operating altitude of 
the aircraft. The UAV is of type VTOL and able to 
communicate with a ground control station, which, in 
turn, is the interface with the mission operator.

5. Proposed Solution
Figure 5 shows a simplified view of the Unmanned 

Aerial Vehicle System (UAVS) architecture used 
in the proposed solution. It consists of a stationary 
UAV and a ground control station communicating 
via a two-way channel. The UAV detects and tracks 
invasive MGUs using only the devices embedded in it, 
continuously transmitting MGU (position, speed, and 
size) and telemetry data (battery, position, tilt, and 
sensor status) to ECS.

Complementing Figure 5, Figure 6 shows UAVS 
behavior throughout a mission, highlighting the 
high-level tasks involved in solving the problem and 
the sequence in which such tasks are performed. The 
dashed rectangle corresponds to the coordinates of 
the vertices which define a polygon corresponding 
to the perimeter of the restricted area provided 
by the mission operator as input data. The system 
then starts by computing the optimal position and 

orientation (pose) of the UAV to maintain full visual 
coverage of the restricted area.

Information
Panel

Stationary ARP Computer

Flight
controller

Embedded
software

Sensors and
actuators

RGB
Camera

Communication
Link

Communication
Link

Operator

GUI

Ground Control Station

Fig. 5 - Simplified UAVS architecture applied in the solution.

End

Beginning

Calculate the ideal 
ARP pose

Detect ETMs in A

Coordinates of 
the vertices of the 

restricted area

Take flight up to
ideal position

Transmit ETM data
to ECS

Continue
Mission?

Yes

No
Land ARP at origin

Track the detected
ETMs in A

Fig. 6 - High-level view of the tasks performed by the UAVS.

With the computed pose, the UAV takes off and 
navigates until reaching it. Then, the MGU detection 
algorithm starts obtaining a frame of reference and 
processing the subsequent frames in search of changes 
which characterize the presence of IMOs in the image. 
With the detection results, the tracking algorithm 
maintains a temporal record of the positioning of the 
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detected MGUs. Concluding a cycle, MGU static and 
dynamic information is transmitted to the ECS.

If the mission is to proceed, a new detection-
trace-transmission cycle begins. The mission 
can be deliberately completed by the operator or 
automatically upon the UAV state. The following 
subsections provide details of the high-level tasks in 
this subsection.

5.1 UAV positioning

For the greater usefulness of the captured images, 
the UAV should hover over the restricted area A to 
adjust its field of view so the restricted area includes 
as many pixels as possible and maximize its pixel/
area ratio. Thus, MGUs entering A will occupy more 
pixels, making detection easier. Since the camera 
sensor is rectangular to maximize the pixel/area ratio, 
a rectangle Rect is computed, whose minimum area 
surrounds the entire restricted area A.

Then, the UAV must match the latitude and 
longitude of the Rect center and the UAV orientation 
must be defined so both the longest side of the 
computed rectangle and the captured image are 
parallel and their centers coincide. After computing 
the UAV pose, it is necessary to estimate the altitude 
at which the aircraft must hover, so its camera has 
full coverage of the restricted area. In this case, we 
considered that the parameters related to the camera 
lens are previously known.

According to Equation 3 [38], the dimensions 
(W, L) of the coverage area of a camera gliding to the 
ground at an altitude h can be estimated as follows:

 

         (3)

in which, α corresponds to the vertical opening angle of 
the camera and β, to its horizontal opening. Thus, the 
minimum altitude hmin allowed for the UVA camera to 
fully cover A can be derived from Equation 3 as follows:

                         
(4)

These calculations disregard horizontal and vertical 
displacements caused by environmental weather and 
errors in the UAV sensors. Thus, we recommend a 
safety margin to avoid the possible lack of coverage of 
regions near the edges of A. Figure 7 shows an image 
of a fictitious restricted area to be guarded.

Fig. 7 - Fictitious restricted area to be monitored and 
representations of the scope of the camera in different situations.

In Figure 7, the polygon with dark green solid 
edges corresponds to restricted area A. The rectangle 
with yellow solid edges corresponds to the minimum 
rectangle surrounding the restricted area. The rectangle 
with blue dotted edges corresponds to the area covered 
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by the UAV camera when the aircraft is in the previously 
computed pose, represented by the white circle with a 
red border. For comparison, the larger rectangle with 
yellow dotted edges corresponds to the image captured 
by the UAV camera when the aircraft is hovering in the 
horizontal position of the computed pose, but at a higher 
altitude and with a different orientation.

The rectangle with red edges within the restricted 
area corresponds to a random object of interest. 
This object occupies about 2.3% of the blue dotted 
rectangle and 1.4% of the yellow dotted rectangle, i.e., 
in the image captured in the ideal pose, the object 
would have approximately 64% more I, making it 
more “visible” in the detection phase of MGUs.

5.2 Image stabilization

Vibrations caused by engines and movement 
caused by weather or sensor inaccuracy are among the 
causes of problems in images captured using UAVs. 
Maintaining the alignment of frames captured by the 
camera is crucial for IMO detection algorithms. This 
study uses a hybrid solution based on mechanical 
stabilization with a motorized gimbal and software 
stabilization. The gimbal is triggered for angular 
scrolling and pitching movements. In [39], the same 
authors of this article developed this technique.

Fig. 8 - Generation of invalid edges caused by geometric 
transformations applied to correct unwanted camera 
movements. (a) frame of reference; (b) frame to be aligned; (c) 
corrected table.

Figure 8 shows an example of alignment that 
creates invalid edges: in (a), the frame of reference, (b), 
the frame to be aligned, and (c), the frame corrected by 
geometric transformation and the black edges, which 

emerged as a side effect. We should mention that the 
size of the black edges increases proportionally to the 
movements of the camera. Thus, maintaining UAV 
stability is of fundamental importance.

5.3 MGU detection and tracking

MGU detection and tracking considers that 
the optical axis of the embedded camera has the 
same direction and sense as the gravity vector, 
thanks to its image stabilization feature. Thus,  
the images captured from the ground are coplanar, 
facilitating MGU detection. The diagram in  
Figure 10 provides an overview of the MGU 
detection and tracking algorithm.

A detection and tracking cycle starts from the 
video stream of the UAV embedded camera. This 
cycle repeats for each processed frame. First, a frame 
is captured to serve as a frame of reference. Each new 
frame, represented in the diagram by the block with 
the current frame label, is first aligned so the image of 
the current frame coincides with the reference image. 
Then, the current frame is subtracted from the frame 
of reference and the result is submitted to a threshold 
which will determine whether each resulting pixel 
should be disregarded (0) or considered (1), generating 
a binary image.

Remove
blobs

Video
flow

Actual frame

Current
blobs

Line frames Subtract
frames

Remove
outliers

Segment
blobs

End of 
the cycle

No

Yes

Yes

No

No

DETECTION

TRACKING

Update
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Are there
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blobs?

Predict
blobs

Update 
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data
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Search for
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the prediction 

policy?

Create new
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Fig. 10 - Overview of the MGU detection and tracking algorithm.
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Contiguous binary pixel groupings form binary 
large objects (blobs). Blobs larger than a second 
threshold are maintained, whereas smaller ones are 
considered outliers and are removed from the image. 
Finally, blobs are properly segmented from the 
background and stored in the current blob collection. 
These blobs are the candidates for detected MGUs, 
beginning the tracking phase.

In the first cycle, blobs will automatically constitute 
the collection of existing blobs. In the next cycle, 
current blobs are compared with those computed in 
the previous cycle to search for matches between blob 
collections. Thus, operators can maintain a history of 
blob positions over time.

In view of UAV frame processing rate, camera 
resolution, and altitude, blobs move by a few pixels 
between one frame and another. Thus, searching for a 
match consists of finding a neighboring blob with the 
same physical (aspect and area ratio) and behavioral 
(direction and speed) characteristics as the current 
frame blob. Thus, the search radius is a parameter 
influencing performance. 

A new blob is any current blob which does not 
have a corresponding existing blob, i.e., one which 
has just entered the restricted area. Current blobs 
with matching existing blobs will have their tracking 
information and data updated. If any existing blob 
has no match, it may have left the restricted area or is 
experiencing occlusion.

Occlusion is handled via a prediction policy 
in which the next position of the occluded blob is 
computed according to its dynamic behavior, based 
on its position history. The prediction policy can 
delete a blob or update its tracking data with the new 
estimated position. Deletion can occur if the blob 
position indicates it has left the restricted area or if it is 
unmatched for a while above an adjustable threshold.

5.4 The built UAV

To conduct experiments on the intrinsic parts 
of the proposed UAVS, an UAV was built, whose 
characteristics meet all the premises of our problem. 
Our methodology evolved from a previous project, 
published in [40]. The UAV uses highly commercially 
available shelf components, which were carefully 
selected from empirical, individual, and integrated 
computerized tests.

The UAV built has a 330mm wingspan, a hovering 
range of more than 40 minutes, and a final weight of 
1080g, whereas its predecessor had a 450mm wingspan, 
flew up to 23 minutes, and weighed 1.5kg. Evolutions 
in its sensors were also relevant. The autonomy gain 
is mainly due to the lithium-ion cell battery built 
specifically for this vehicle. We should also mention 
that the gimbal used for mechanical stabilization was 
built using shelf components. Figure 9 shows a real 
photo of the UAV built for this study.

Fig. 9 – 330mm UAV built to play the role of stationary UAV.

For navigation and control, a library has been 
developed with high-level functions for UAV 
movement, which is available in [41], based on 
another, of lower abstraction, called DroneKit [42], 
which uses a specific protocol, called MavLink [43], to 
communicate with small UAVs.
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6. Experimental data
Due to the complexity of creating a real-world 

scenario to fully validate UAVS in a surveillance 
mission, the intrinsic parts of the system were 
individually validated. Real and computer-simulated 
flight tests were performed to validate the built 
UAV. Computer simulation used a Software in the 
Loop (SITL) architecture made available by the 
team developing ArduPilot [44], the flight controller 
firmware. Figure 11 shows the results.

(a)

(b)
Fig. 11 – Trajectories performed by the SITL-simulated UAV 
(blue dash) and the UAV in real flight (orange dash). (a) 2D 
visualization; (b) 3D display.

The graphs in Figure 12 show the difference in 
latitude, longitude, and altitude between the actual 
flight experiments and SITL. The difference between 

the results is negligible for this type of application 
and clearly shows that UAV navigation accuracy 
enables SITL simulation for the initial validation of 
navigation algorithms.
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Fig. 12 - Latitude (a), longitude (b), and altitude (c) of the 
trajectories generated by SITL simulation (blue line) and by 
the UAV in real flight (orange line).

To validate the detection and tracking algorithm, 
a computer simulator was designed to generate 
MGU animations entering a restricted area, 
experiencing occlusions, and overlapping other 
MGUs. Figure 13 shows screenshots of the detection 
and tracking algorithm in action. The first capture (a) 
shows a green region representing the terrain; brown 
rectangles, occluded regions; and a white rectangle, an 
MGU. The second capture (b) shows a binary image 
with an MGU highlighted from the background. The 
third capture (c) shows the MGUs trails over time, 
including predicted positions.

The simulator also generates groundtruth data. 
The graph in Figure 14 shows some qualitative 
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detection and tracking results by comparing tracking 
data generated by the algorithm with groundtruth 
data generated by the simulator.

(a) (b) (c)

Fig. 13 - Result of the tracking algorithm applied to the animation 
generated by the simulator. (a) original image; (b) image subtracted 
from the background; (c) computed tracking.

In the caption shown at the top of the graph 
in Figure 14, “GT” means “groundtruth;” “tra,” 
“tracking;” “N.O.,” “no occlusion;” and “W.O.,” “with 
occlusion.” The graph has eight lines representing 
trajectories traveled by the respective MGUs along 
the image, four generated by groundtruth data 
(thick lines) and four computed by the detection and 
tracing algorithm (narrow lines). Each generating 
point of such lines refers to the MGU centroid which 
traveled the trajectory represented by the line. 
The groundtruth-related line has been widened to 
facilitate comparison, as the chart has many overlaps.

The first experiment, shown in Figure 14 by gray 
and yellow lines, corresponds to an MGU moving in 
a straight line without undergoing occlusion. The 
yellow line suffers small variations but fails to leave 
the central region of the groundtruth line. The 
second experiment, shown in Figure 14 by the black 
and light blue lines, corresponds to an MGU moving 
in a straight line and suffering some occlusions. 
Computed tracking was also close to the groundtruth 
one, except for the highlighted region in which an 
occlusion occurred, which required a more intense 
use of the prediction mechanism.

The third experiment, shown in Figure 14 by the 
red and white lines, simulated an MGU on a path 
with curves without suffering occlusion. Tracking 
was also very close to groundtruth. The fourth and 
final experiment, shown in Figure 14 by the blue 
and green lines, simulated an MGU on a trajectory 
with curves and suffering occlusions at some points.  

In this fourth experiment, the computed trail was 
close to groundtruth, but it highlights a passage in 
which an occlusion caused a slight deviation in the 
trajectory estimated by the prediction policy.
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Fig. 14 - Comparison between groundtruth trajectories and tracks 
computed by the detection and tracking algorithm.
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Fig. 15 – Influence of the number of MGUs and video 
resolution on the rate of frames processed per second.

To validate runtime, 16 animations were 
generated simulating groups of 20 to 500 MGUs 
simultaneously travelling in the scene. The 
animations were captured at three different video 
resolutions (1024×768, 800×600, and 640×480), 
representing different camera resolutions. Figure 15 
shows the relation between the number of MGUs and 
the frame rate per second of each tested resolution. 
Dotted lines are just to show a linear trend in the 
complexity of the algorithm.

The experiments were conducted on a Raspberry 
Pi 4B with 4GB of RAM, whose temperature was 
maintained between 41 and 45 degrees Celsius.  
An expected observation is that the best case occurs 
with 20 MGUs, whereas the worst case, with 500 MGUs. 
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For the 640×480 video resolution, the frame rate per 
second ranged from 17.1 (worst case) to 40.7 (best 
case), intaking a processing time per frame of 58ms 
and 24ms, respectively. At 800×600 video resolution, 
the frame rate per second ranged from 14.1 to 27.1, 
demanding 71ms and 37ms per frame, respectively. 
With the 1024×768 resolution, the frame rate per 
second varied between 10.1 and 16.5, demanding 
99ms and 61ms per frame, respectively.

Note that the higher the video resolution, the lower 
the impact of the number of MGUs on processing time, 
indicating that the algorithm spends most of its time 
performing image processing and less time managing 
the MGUs in the scene. The linear trend and number 
of MGUs in the scene impacts runtime less than 
the other involved variables contribute to facilitate 
the dimensioning of the computational resources 
necessary for some specific application requiring, for 
example, surveillance of extensive areas and the use 
of higher resolution cameras.

Finally, we should mention that, in qualitative 
terms, the minimum size for detectable MGUs varies 
according to the number of pixels they occupy in the 
image and their contrast in relation to the background 
(soil). The proposed detection and tracking algorithm 
proved capable of tracking MGUs occupying at least 
four pixels in simulation-generated videos. However, 
in visually noisy real environments, the minimum size 
of detectable MGUs tends to increase as does noise 
intensity, and the establishment of this trend requires 
more specific studies.

7. Final remarks
This study showed a UAVS to autonomously detect 

MGUs in restricted areas in open environments, 

designed for situations in which conventional 
surveillance means, such as CCTV and human 
patrolling, are unfeasible due to establishment time, 
available structure, cost, and operational coordination. 
The proposed solution can bring relevant advantages 
to these aspects and reduce the risk to human lives by 
requiring only one remote operator.

Regarding the UAV, the experimentally obtained 
results show the feasibility of the prototype built to 
meet the established premises. It is a low-cost portable 
platform whose operation and maintenance is easy 
and thus useful for various applications. As for the 
developed software, performance results show that 
algorithmic complexity enables fully embedded real-
time running without the need for transmitting 
images for external processing.

We should mention that the reduced flight time 
of portable quadcopter-type UAVs is an important 
restraint which would limit the useful time of 
the MGU detection system and, consequently, 
its feasibility. Some solutions can reduce this 
limitation. One possibility is using multiple UAVs to 
automatically replace stationary UAVs. Another is 
using power-tethered UAVs, as in [45]. A suggestion 
for future studies is the creation of an algorithm to 
determine MGU threat levels according to physical 
and behavioral characteristics such as its size, speed, 
movement pattern, and direction.
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