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ABSTRACT: Virtual simulations have grown in importance for 
manpower training but it is important to portray reality with a 
satisfactory degree of fidelity. In this study, we applied a modified 
DBSCAN clusterization method, along with data pre- and 
post-processing, to obtain, from AIS messages, routes representing the 
common behavior of vessels in a port area and use them to control 
non-playable characters in navigation simulation training for the 
Brazilian Navy. The algorithm was effective in generating 19 different 
routes depicting five selected vessel types from 76.179 AIS messages 
collected for 48 hours.

KEYWORDS: Virtual Simulations. Clusterization. DBSCAN. 
AIS. Routes.

RESUMO: Simulações virtuais têm crescido muito em importância para 
treinamento de recursos humanos, mas é importante que representem a 
realidade com um grau satisfatório de fidelidade. Neste trabalho, aplicamos 
o método de clusterização DBSCAN modificado, em conjunto com pré 
e pós-processamentos de dados, para obter derrotas representativas do 
comportamento comum de navios em uma zona portuária, a partir de 
mensagens AIS, para utilizá-las no controle de NPC em uma simulação de 
treinamento de navegação da Marinha do Brasil. O algoritmo mostrou-se 
efetivo, gerando 19 diferentes trajetórias representativas de 5 tipos de navios 
selecionados, a partir de 76.179 mensagens AIS coletadas durante 48 horas.

PALAVRAS-CHAVE: Simulações Virtuais. Clusterização. DBSCAN. 
AIS. Trajetórias.
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1. Introduction

Simulators enable the Brazilian Navy to 
recreate vessel navigation, maneuver 
conditions, and maritime traffic interactions, 

reducing operational costs. It also preserves Navy 
assets and has a wide range of trainable procedures, 
benefiting the readiness of the Naval Force by greatly 
decreasing costs, risks, and equipment wear.

The Brazilian Navy Center for Analysis of 
Naval Systems (CASNAV) has developed a Bridge 
Simulator to meet the navigation training demands 
of its personnel [1]. In this simulator, the maritime 
traffic interacting with users is controlled by 
an instructor who must define trajectories for 
autonomous vessels (NPC - non-playable characters). 
Each NPC can be associated with a predetermined 
trajectory. This solution is interesting only for a 

specific simulation. For vessels entering and leaving 
ports, the simulated maritime traffic should ideally 
be as similar as possible to reality.

Thus, some vessels (freighters, tugboats, offshores, 
barges, etc.) have certain trajectory patterns. Manual 
trajectory creation for exercises requires instructors 
to know the common waterways of a port area (PA) 
and what vessel category they use. If instructors lack 
this knowledge, they may create exercises which 
disagree with reality.

A tool able to assist in the generation of specific vessel 
trajectories enables instructors, via basic commands, 
to populate simulations with NPCs portraying daily 
found trajectories as reliably as possible. Thus, 
instructors can focus on users’ procedures without 
worrying about building a trajectory for each NPC.

This study aims to propose the use of an unsupervised 
machine learning technique, DBSCANSD (Density 
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Based Spatial Clustering Application with Noise 
by Varying Densities) [2], to generate trajectories 
representing common vessel movement based on the 
navigation history of a given port. These trajectories 
would be stored in the simulation system and 
instructors would only choose vessel types, entrusting 
the system to determine their trajectories.

Thus, it would be possible to simulate maritime 
traffic in any port in Brazil or abroad just by collecting 
historical navigation data, honing users’ training. 
Moreover, it is of paramount importance that the 
generated trajectories have the characteristics of the 
observed trajectories to produce greater realism.

Section 2 describes related studies on trajectory 
prediction. Section 3 shows how we obtained and 
treated historical vessel movement data in Guanabara 
Bay. Section 4 describes DBSCANSD use for 
predicting trajectories. Section 5 provides the results 
obtained by our proposal and, finally, section 6 offers 
our final considerations and conclusions.

2. Related studies
Several studies have aimed to predict vessel 

trajectory for various purposes based on past 
trajectories obtained by Automatic Identification 
System (AIS) equipment providing, among other 
information, the latitude and longitude of a vessel. 
Historical data can be divided into groups (clusters) 
to extract and classify trajectories into a model which 
can represent them.

Perera et al. [3] implemented an algorithm with 
artificial neural networks and the extended Kalman 
filter to predict trajectories, mainly focusing on vessel 
detection and monitoring.

Vries and Someren [4] defined a kernel-based 
machine learning method to group and classify 
maritime traffic and detect behavior anomalies. 
Initially, AIS data is compressed into linear trajectories 
via geometric operations. Next, similarities are 
compared by grouping them with kernel k-means and 
classifying them by support vector machines.

Duca et al. [5] used an algorithm based on a 
K-Nearest Neighbor classifier to predict vessel 

positions after 30, 45, and 60 minutes. This algorithm 
receives current data as input and returns an array of 
probabilities for a future position in a pre-established 
grid. This study reached a 79.4% precision, 
78.5% coverage, and 93.1% accuracy.

Pallotta et al. [6] used the Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) 
algorithm, first proposed by Ester et al. [7], to group 
position points based on AIS data attributes. A circular 
area is projected over a vessel current state. All routes 
passing through this area are considered compatible 
with the vessel. Once positions are grouped together, 
trajectory predictions can be made based on this history.

Liu et al. [2] applied the DBSCAN approach with 
non-spatial attributes such as vessel speed and direction 
to compare the most used trajectories with those 
predicted by the rules and regulations of each port.

These studies show an evident concern with 
predicting trajectories to monitor vessels, detect 
anomalies, and search and rescue.

Unlike [2], this study uses data pre- and 
post-processing, based on PA characteristics and 
vessel types making up maritime traffic, to obtain 
realistic trajectories to be inserted in a simulated 
training environment.

3. DATABASE USED
 The data used by our algorithm is the dynamic 

and static information vessels emitted via an AIS 
equipment; in this case, a transponder transmitting 
information such as latitude, longitude, speed, 
direction, record, name, and data-time of information 
collection in VHF frequency.

This study approached the Guanabara Bay, 
in the state of Rio de Janeiro, housing the Rio de 
Janeiro port, oil and gas terminals, and passenger 
ferry stations composing the Rio de Janeiro-Niterói 
route. To acquire information, an area of interest was 
limited by the coordinates 22°45.0’S and 043°14.0’W, 
22°45.0’S and 043°05.0’W, 23°0.0’S and 043°14.0’W, 
and 23°0.0’S and 043°05.0’W, equivalent to Directorate 
of Hydrography and Navigation nautical chart 1501.
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Then, we obtained the AIS data of all vessels for 
August 14 to 16, 2019, totaling 111,015 AIS messages. 
Positions in which vessels moved at a speed below 0.5 
knots were removed so only vessels in real motion 
were used, maintaining, after removal, a total of 
76,179 messages.

Data were original NMEA-183 message processes, 
from which we extracted the following information 
of interest: vessel identification (MMSI), latitude, 
longitude, speed, direction (destination), and date-time. 

Figure 1 shows the Guanabara Bay data plotted in 
nautical chart 1501.

Fig. 1 - Positions of all vessels.

4. DBSCANSD trajectory prediction
 Short for ‘Density Based Spatial Clustering 

of Application with Noise,’ DBSCAN consists of 
nonparametric density-based clustering [7]. This method 
is effective for detecting arbitrary clusters of different 
sizes, finding and separating data noise, and detecting 
“natural” clusters and their arrangement within the 
data space without any preliminary group information.

Clusters and the DBSCAN algorithm apply to 
two- and three-dimension Euclidean spaces and 
any characteristically high-dimensional space [7]. 

The idea of the DBSCAN method is that every point 
in a cluster has at least a certain number of points in 
its neighborhood of a given radius.

4.1 Definitions

ε-neighborhood of a point p (Nε (p)): The vicinity of 
an object p with radius ε is given by Nε (p) = {q in D | 
dist (p, q) < ε}. In Figure 2, circles represent the 
ε-neighborhood of point q and the ε-neighborhood of 
point p [8], respectively.

Central Point: If the ε-neighborhood of an object 
p contains at least a minimum number of objects 
(MinPts), then object p is called the central point. 

Edge points: If the ε–neighborhood of an object 
p is less than MinPts but contains some center point, 
then object p is an edge point.

Direct density reach: An object p is direct density 
reachable by object q, with respect to ε and MinPts, if p 
is in the ε-neighborhood of q and q is a central point.

Density connection: An object p is density 
connected to object q, with respect to ε and MinPts 
in an object set D, if D contains an object o such that 
both p and q are direct density reachable with respect 
to ε and MinPts.

DBSCAN Cluster: Is the set of density connected 
points.

Fig. 2 - ε-neighborhood of a point p. Source: [8].

4.2 Method

According to [8], DBSCAN finds clusters by checking 
the neighborhood of each point in the database, starting 
with an arbitrary object p. If p is a central point, a new 
cluster with p as a center is created. If p is an edge point, 
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no point is density reachable from p and the algorithm 
visits the next point on the database. DBSCAN then 
iteratively collects direct density reachable objects from 
center points, which may involve joining some density 
reachable clusters. The process ends when no new 
points can be added to any cluster.

 In the DBSCAN algorithm, any two central points 
with a distance less than or equal to ε are placed in 
the same cluster. Any edge point near a central point 
is placed in the same cluster as the central point. 
Points not directly attainable by some central point 
are classified as noise.

In addition to the basic DBSCAN idea, Liu et al. 
[2] adopted two factors: maximum speed variation 
(MaxSpd) and maximum direction variation (MaxDir). 
Their aim was to cover not only proximal neighbors 
but also direction- (Course Over Ground, COG) 
and speed-similar ones (Speed Over Ground, SOG), 
thus creating DBSCAND.

Then, they modified the ε-neighborhood definition 
to: The vicinity of an object p with radius ε is given 
by Nε(p) = {q∈D | dist (p, q) < ε, |p. SOG − q. Sog| 
<MaxSpd and |p.COG − q. Cog| <MaxDir}. Dist (p, q) 
is given by the geographical distance between p and 
q – considering that they are in a maximum circle of 
radius approximate to that of Earth.

After DBSCANSD is applied to collected data, 
nearby geographic positions with similar speed and 
direction are grouped into a cluster. Then, arbitrary 
cluster formats can be formed and subdivided 
depending on speed and direction.

A Gravity Vector (GV) was also applied, dividing 
a cluster into multiple parts. Thus, each cluster can 
have multiple GVs. GV is a vector formed by average 
COG, SOG, latitude, longitude, and distance [2].

Thus, this method was chosen for its robustness, 
better results, and faster processing than some other 
clustering algorithms, such as the k-means method.

However, the method was insufficient to obtain the 
representative trajectories of a port area, producing 
unusual or impractical trajectories. It was essential 
to develop and use post-processing to optimize 
the final result, eliminate unfeasible trajectories, 
and optimize those obtained.

5. Application and results obtained
DBSCAN requires five input parameters: 

DatasetM (number of points in a trajectory), Epsilon 
(ε-neighborhood), MinPts (minimum number of objects), 
MaxDir (maximum direction variation), and MaxSpd 
(maximum speed variation). The complexity of this 
algorithm is O(n²), in which n is the size of DatasetM [2].

Parameter values will depend on the waterway 
characteristics of each PA [2]. In fact, we found that 
the Rio de Janeiro PA has particularities capable of 
influencing results, such as, for example, the existence 
of a north-south oriented main channel in which 
virtually all vessel types travel at some point in their 
demand, whereas vessels of different types and 
purposes use several other transverse routes on a 
larger or smaller scale.

Due to the algorithm low average processing 
time, we could make several attempts to determine 
the best combination of these parameters. From 
the experiment, we observed that, in addition to 
the characteristics inherent to the conformation 
of PA waterways, the best parameter combination 
also depends on the typical behavior of the target 
vessels, i.e., their direction variability, most common 
navigation routes, speed, and geographical dispersion.

Given the results obtained, we found that we could 
improve the discrimination of common trajectories 
by applying a prior filter for individual vessel types 
to the input data. We justify this choice by the fact 
that vessels of the same category tend to have similar 
origins, destinations, and circulation routes, falling 
within a similar direction and speed range.

Thus, we decided to generate models for each of the 
defined five vessel categories, enabling the algorithm to 
separately explore them: Barge (passengers), Freighter 
(container and bulk carrier), Offshore (platform 
support vessel), Tanker (oil and gas), and Tugboat.

Figure 3 shows the number of AIS messages per 
vessel type. Barges carrying passengers exchange a large 
number of messages due to their regular and constant 
intervals between trips. Offshore vessels also trade a 
considerable number of messages due to the proximity 
of the Rio de Janeiro port to the Campos Basin.
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Barge 43,962

Offshore 15,137

Tugboat 7,436

Freighter 6,216

Tanker 3,428

POSITIONS

Fig. 3 - Division of entry data into the five vessel categories.

Table 1 shows the parameter combination adopted 
for each processed category. We began parameter 
selection by arbitrarily choosing an Epsilon value based 
on the approximate width of the assessed waterways. 
Note that, in the specific case of Barges, we needed 
to reduce this radius since the crossing of several 
trajectories favored the massification of different 
trajectories in the same cluster. In the chosen Port Area, 
there are large variations in the typical trajectories of 
vessels entering or departing from its various port 
terminals. Choosing low MaxDir values would divide 
the same trajectory into several clusters. Thus, we opted 
for a high value for this parameter, which we repeated 
for all vessel types. Possible MaxSpd were limited to a 
range of feasible values for each chosen vessel type, 
experimentally defined with MinPts values, reaching 
the parameter combination in Table 1.

Tab. 1 - Parameter Selection.

Category DatasetM
(messages)

Epsilon
(Nautical 

Miles)

MinPts
(positions)

MaxDir
(degrees)

MaxSpd
(knots)

Barge 43,962 0.001 2 20.0˚ 15.0

Freighter 6,216 0.003 6 20.0˚ 15.0

Offshore 15,137 0.003 6 20.0˚ 8.0

Tugboat 7,436 0.003 4 20.0˚ 10.0

Tanker 3,428 0.003 6 20.0˚ 15.0

5.1 Result post-processing

Category processing improved the discrimination 
of the most common trajectories, but we still found 
discrepancies that could be resolved to optimize results.

We first assessed the generation of clusters with 
few positions, automatically deleting single-point 
trajectories. Those consisting of two to four positions 
established the criterion for the distance traveled by 
the trajectory, automatically eliminating those moving 
less than 100 yards per position. Table 2 describes the 
processed trajectories.

Tab. 2 - Generated, eliminated, and maintained trajectories.

Category (A) (B) (C) (D) (E)

Barge 76 36 28 1 4

Freighter 23 2 4 0 3

Offshore 56 21 8 4 4

Tugboat 29 8 10 2 5

Tanker 30 3 7 0 3

Note: (A) - Total trajectories generated; (B) - trajectories with 
only one position; (C) - trajectories with less than four positions; 
(D) - land trajectories; (E) - maintained trajectories.

Trajectories over land or non-navigable areas were 
also a problem. To automatically detect and eliminate 
them, we created an image of the nautical chart, 
as Figure 4 shows, in which land and non-navigable 
areas were colored in RGB = {255, 0, 0} red. We then 
mapped the latitudes and longitudes of trajectory 
points so they corresponded to the pixel positions in 
the generated image. For each trajectory point, the 
equivalent pixel is checked, discarding the entire 
trajectory if its R value equals 255.

For the CASNAV Bridge Simulator, it is not 
interesting to have very close points representing a 
trajectory since NPC are programmed to always seek 
the next point in the trajectory and, once reached, 
correct their course and speed toward the next one. 
Trajectories with very close points would cause erratic 
behavior in the NPC, decreasing the fidelity of their 
behavior to reality.
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To solve this problem, we optimized trajectories by 
reducing collinear points (or those very close to the 
path) via the Douglas-Peucker algorithm [9].

Fig. 4 - Image generated to detect trajectory points on land or non-
navigable areas, represented in red, and navigable areas, in green.

This algorithm traverses the trajectory component 
points, evaluating them three by three and eliminating 
intermediate points within a predetermined distance 
of the straight segment formed by its most distal points.

This algorithm can create trajectory segments which 
cross land or non-navigable points. The maximum 
distance for eliminating a point must be adjusted to 
prevent this. The reported experiments adopted values 
smaller than half the width of the main Guanabara 
Bay channel, i.e., approximately 100 yards.

This automatic post-processing, as the analysis of 
Table 2 shows, still left many trajectories. Determining 
objective criteria to evaluate the obtained results is 
difficult. The best analysis seems to be the subjective 
evaluation of specialists who know the characteristics 
of maritime traffic in the discussed region. This was 
the last criterion used to reach the final number of 
trajectories in Table 2.

Values above Epsilon and below MinPts decrease 
trajectory discrimination, joining different trajectories. 
However, adjusting parameters to prevent different 

trajectories from joining creates the tendency of 
separating stretches of the same trajectory into 
different clusters.

Another strategy to obtain objective criteria was 
estimating the standard deviation and coefficient 
of variation of the directions and velocities of each 
trajectory, seeking to obtain trends which would help us 
to choose the best trajectories. We noted that, for some 
cases, the best trajectories were those with lower 
variances, whereas, for others, they were those with the 
highest values. Thus, this is a poor choice criterion.

Figures 5 to 9 show the trajectories obtained before 
and after post-processing.

Fig. 5 - Trajectories generated for Barges. Before post-processing 
(left) and after post-processing (right).

Fig. 6 - Trajectories generated for Freighters. Before post-
processing (left) and after post-processing (right).
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Fig. 7 - Trajectories generated for Offshore. Before post-
processing (left) and after post-processing (right).

Fig. 8 - Trajectories generated for Tugboats. Before post-
processing (left) and after post-processing (right).

Fig. 9 - Trajectories generated for Tankers. Before post-processing (left) and after post-processing (right).

6. Final Considerations
This study aimed to obtain, from a large mass of AIS 

message data, trajectories representing the common 
vessel movement around a PA and to use them to 
control NPC vessels in the CASNAV Bridge Simulator. 

Using the algorithm proposed by Liu et al. [2], 
together with pre-processing and post-data processing, 

we could obtain 19 representative trajectories of the 
chosen five vessel categories, and we considered our 
results very satisfactory and applicable to simulation 
exercises conducted within the Brazilian Navy.

Future studies could explore the conjugation of this 
method with TraClus [10] and evaluate the results. 
There is ample room for improvements to data pre- 
and post-processing to optimize the obtained results. 
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