Absorção de micro-ondas por nanopartículas de ferritas mistas de cobalto e cério

I C Gonçalves^a, R S de Biasi^{*a}, A B S Figueiredo^a, C L Oliveira^b e J B Campos^c ^a Instituto Militar de Engenharia (IME) Praça General Tibúrcio, 80, 22290-270, Praia Vermelha, Rio de Janeiro, RJ, Brasil. ^{b,c} Instituto de Física, Universidade do Estado do Rio de Janeiro, RJ, Brasil *rsbiasi@ime.eb.br

RESUMO: Partículas nanométricas de CoFe2-xCexO4, em que $0 \le x \le 0,29$, foram sintetizadas pelo método sol-gel/combustão e a absorção de micro-ondas das ferritas foi medida pelo método de Absorção de Micro-ondas Modulada Magneticamente (AMMM). Os resultados mostraram que a absorção é máxima para uma concentração de Ce entre 0,18 e 0,26, um resultado que pode ser útil para aplicações práticas desse material.

PALAVRAS-CHAVE: Processo sol-gel. Nanopartículas. Ferritas. Absorção de micro-ondas.

1. Introdução

ferrita de cobalto (CoFe_2O_4) é um espinélio que, na forma nanométrica, tem sido muito estudado nos últimos anos devido ao grande número de aplicações, dentre as quais a absorção de micro-ondas [1]. Resultados recentes obtidos por outros pesquisadores [2,3] sugerem que a dopagem com cério aumenta a absorção de microondas pela ferrita de cobalto, mas apenas até uma fração molar de Ce da ordem de 0,3. O objetivo do presente trabalho foi confirmar esta alegação e determinar a causa da redução da absorção de microondas para frações molares de Ce maiores que certo limite.

2. Método experimental

2.1 Preparação das amostras

Quantidades estequiométricas de $Fe(NO_3)_3.9H_2O$, $Co(NO_3)_2.6H_2O$ e $Ce(NO_3)_2.6H_2O$ de alta pureza foram dissolvidas em água deionizada para obter a solução inicial. A esta solução foi acrescentada uma ABSTRACT: Nanosized particles of CoFe2-xCexO4, where $0 \le x \le 0,29$, were synthesized by the sol-gel combustion method and the microwave absorption of these ferrites was measured by the Magnetically Modulated Microwave Absorption (MAMMA) method. The results showed that the absorption is highest for a Ce concentration between 0.18 and 0.26, a result that can be useful for practical applications of this material.

KEYWORDS: Sol-gel process. Nanoparticles. Ferrites. Magnetic properties.

solução 0,75 molar de ácido cítrico ($C_6H_8O_7$). O béquer contendo a solução final foi posicionado em uma placa quente sob agitação constante e mantido a uma temperatura de aproximadamente 60 °C até se formar um gel. Em seguida, a temperatura foi aumentada para 80 °C até o gel se tornar transparente. A temperatura foi aumentada para ocorrer a evaporação da água e o material entrar em combustão. A combustão produziu um pó, que foi macerado em um almofariz e usado para preparar uma pastilha, que foi tratada a 1000 °C por 2 h. A pastilha foi resfriada até a temperatura ambiente e macerada em um almofariz.

As amostras foram rotuladas de acordo com a composição nominal, como mostra a **tabela 1**.

Tab	. 1 –	Composição	Nominal	das A	Amostras.
-----	-------	------------	---------	-------	-----------

Composição Nominal				
$\mathrm{CoFe}_{2}\mathrm{O}_{4}$				
$\mathrm{CoFe}_{1,9}\mathrm{Ce}_{0,1}\mathrm{O}_4$				
$\mathrm{CoFe}_{\mathrm{1,8}}\mathrm{Ce}_{\mathrm{0,2}}\mathrm{O}_{\mathrm{4}}$				
$\mathrm{CoFe}_{1,7}\mathrm{Ce}_{0,3}\mathrm{O}_4$				
$\mathrm{CoFe}_{1,6}\mathrm{Ce}_{0,4}\mathrm{O}_4$				
$\mathrm{CoFe}_{1,5}\mathrm{Ce}_{0,5}\mathrm{O}_4$				

2.2 Equipamentos

Os difratogramas foram obtidos em difratômetros PANalytical X'Pert Pro da Companhia de Pesquisa de Recursos Minerais (CPRM) e do Centro de Pesquisas de Energia Elétrica (CEPEL). A análise dos difratogramas foi realizada com o auxílio do software TOPAS, utilizando o método de Riertveld.

As medidas da absorção da derivada da curva de absorção de micro-ondas em função do campo magnético foram realizadas no laboratório de ressonância magnética do Instituto Militar de Engenharia (IME) em um espectrômetro de ressonância magnética Varian E-12 trabalhando na Banda X (9,5 GHz).

3. Resultados

3.1 Medidas de difração de raios X

O objetivo das medidas de difração de raios X foi assegurar que a fase cristalina desejada estava presente. Um difratograma típico é mostrado na **figura 1**. De acordo com os difratogramas, todas as amostras, exceto a amostra de ferrita de cobalto não dopada, continham, além da fase espinélio, uma fração significativa de óxido de cério (CeO₉).

O fato de haver nas amostras uma fração significativa de CeO₂, o que também foi observado [2,3] por outros pesquisadores, significa que a concentração de Ce na ferrita mista é menor que a concentração nominal. Para determinar a concentração real de Ce, foi usado o refinamento de Rietveld para determinar as frações mássicas de ferrita e óxido de cério.

O difratograma da **figura 2** foi ajustado para uma ferrita de cobalto pura, com a ficha ICSD109044, e a concordância foi boa, com um GOF de 1,2.

Os difratogramas das **figuras 3 a 7** foram inicialmente ajustados pelo software TOPAS com uma ficha de ferrita de cobalto dopada com cério criada tomando como ponto de partida a ficha ICSD109044 de ferrita de cobalto pura e refinados recursivamente até que as frações mássicas fossem compatíveis com as distribuições catiônicas determinadas por Hashhash et al. [4,5]. Os resultados finais são apresentados nas **tabelas 2 e 3**.

Fig. 2 – Ajuste do difratograma da amostra Ce0.

Fig. 5 – Ajuste do difratograma da amostra Ce3.

Fig. 6 – Ajuste do difratograma da amostra Ce4.

Fig. 7 – Ajuste do difratograma da amostra Ce5.

Tab. 2 – Tamanhos médios dos cristalitos, d, parâmetros de rede, A, Frações mássicas, fm, e valores do GOF obtidos a partir de refinamentos de Rietveld.

	d	A	f_m (%)		
	(nm)	(nm)	(nm) $CoFe_{2-x}Ce_xO_4$		GOF
Ce0	61	0,839	100,0	-	1,2
Ce1	121	0.839	93,2	6,8	1,2
Ce2	79	0,838	86,8	13,2	1,3
Ce3	87	0,837	81,1	18,9	1,7
Ce4	72	0,837	74,3	25,7	1,6
Ce5	68	0,836	68,7	31,3	1,8

Tab. 3 - Composição real e distribuição catiônica das amostras.

	Composição	Sítio A		Sítio B		
Ce0	$CoFe_2O_4$	Co _{0,20}	Fe _{0,80}	Co _{0,80}	Fe _{1,20}	Ce ₀
Ce1	$CoFe_{1,91}Ce_{0,09}O_4$	Co _{0,29}	Fe _{0,71}	Co _{0,71}	Fe _{1,20}	Ce _{0,09}
Ce2	$\mathrm{CoFe}_{1,84}\mathrm{Ce}_{0,16}\mathrm{O}_4$	Co _{0,36}	Fe _{0,64}	Co _{0,64}	Fe _{1,20}	Ce _{0,16}
Ce3	$\mathrm{CoFe}_{1,78}\mathrm{Ce}_{0,22}\mathrm{O}_4$	Co _{0,42}	Fe _{0,58}	Co _{0,58}	Fe _{1,20}	Ce _{0,22}
Ce4	$\mathrm{CoFe}_{1,74}\mathrm{Ce}_{0,26}\mathrm{O}_4$	Co _{0,46}	Fe _{0,54}	Co _{0,54}	Fe _{1,20}	Ce _{0,26}
Ce5	$CoFe_{1,71}Ce_{0,29}O_4$	$\operatorname{Co}_{0,49}$	Fe _{0,51}	Co _{0,51}	Fe _{1,20}	Ce _{0,29}

A **figura 8** mostra a variação da fração mássica de ferrita com a concentração nominal de cério. A variação é praticamente linear. A reta mostra o resultado de um ajuste por mínimos quadrados, segundo qual variação pode ser descrita com boa aproximação pela equação

$$f_m = 99,65 - 62,54f_n \tag{1}$$

em que f_n é a fração mássica de ferrita e f_n é a fração molar nominal de cério.

Fig. 8 – Fração mássica da ferrita mista com a fração molar nominal de cério. A reta é o resultado de um ajuste por mínimos quadrados (**equação 1**) aos pontos experimentais.

3.2 Medidas de absorção de micro-ondas

A **figura 9** mostra a absorção não ressonante de micro-ondas conhecida como Absorção de Micro-ondas Modulada Magneticamente (AMMM) de $\text{CoFe}_{2-x}\text{Ce}_x\text{O}_4$ à temperatura ambiente, obtida em um espectrômetro de ressonância magnética Varian E-12. Os parâmetros usados foram os seguintes: frequência de micro-ondas, 9,5 Hz; potência de micro-ondas, 10 mW.

Fig. 9 – Absorção de micro-ondas das ferritas mistas $CoFe_{2x}Ce_xO_4$ em função do campo magnético aplicado.

A intensidade relativa da absorção de micro-ondas em função da concentração de cério é mostrada na **tabela 4** e na **figura 10**.

Amostra	fCe	А
Ce0	0	0,16
Ce1	0,09	0,28
Ce2	0,18	1,00
Ce3	0,26	0,95
Ce4	0,30	0,92
Ce5	0,39	0,74

Tab. 4 – Absorção relativa de micro-ondas das amostras de CoFe_{2x}Ce_xO₄, A, em função da fração molar de cério, f_{cs} .

Fig. 10 – Absorção de micro-ondas em função da fração molar de cério.

4. Discussão

Os resultados de absorção de micro-ondas mostram que a absorção é máxima para uma concentração de cério entre 0,18 e 0,26, o que está razoavelmente próximo dos resultados obtidos por Jing et al. [3]. Quanto à causa do aumento da absorção de micro-ondas da ferrita mista, em relação à ferrita pura de cobalto para frações de cério até 0,3 e uma redução da absorção para frações superiores a 0,3, as medidas de tamanho de cristalito parecem eliminar a possibilidade de que essa grandeza seja responsável pela variação observada, já que não existe uma correlação entre o tamanho de cristalito e a concentração de cério (veja a **tabela 2**).

Os dados de condutividade em altas frequências apresentados por Kamran e Anis-ur-Rehman [3] mostram uma variação semelhante à da absorção de micro-ondas. De acordo com esses autores, o aumento da condutividade em altas frequências das amostras com fração nominal de Ce menor ou igual a 0,3 se deve à diminuição da fração molar de íons de Fe³⁺ nos sítios tetraédricos, enquanto a redução da condutividade em altas frequências para frações nominais de Ce maiores que 0,3 é atribuída à presença de CeO₂, que, acima de uma certa fração mássica, produz uma redução de condutividade que não é mais compensada pela redução da concentração de Fe³⁺ nos sítios tetraédricos. Para analisar matematicamente este fenômeno, foram analisadas separadamente a variação da fração mássica de CeO₂ com a fração nominal de Ce (**tabela 4** e **figura 11**) e a variação da fração molar de Fe nos sítios tetraédricos $f_{,Fe,A}$ com a fração nominal de Ce nas amostras (**tabela 5** e **figura 12**). Nos dois casos, a variação é aproximadamente linear com a fração nominal da Ce nas amostras, mas a variação da absorção de microondas com a fração nominal de Ce não é linear.

Como mostra a **figura 13**, é possível dividir a curva de absorção em duas regiões. Para uma fração de cério nominal menor que 0,2, a absorção é dominada pela redução da fração molar de Fe³⁺ em sítios tetraédricos e pode ser descrita por uma função normalizada de segundo grau $A = 0,16 + 18 f_{Ce}^2$, em que f_{Ce} é a fração nominal de Ce. Para uma fração de cério maior que 0,3, a absorção é reduzida em virtude do aumento da fração mássica de CeO₂ e a absorção tende a diminuir. Os resultados mostram, portanto, que a fração nominal de Ce para que a absorção de micro-ondas seja máxima é da ordem de 0,2 a 0,3 e que, para frações de Ce até 0,3, a absorção de micro-ondas nas amostras investigadas pode ser descrita por uma função razoavelmente simples, o que pode ser útil para futuras pesquisas.

Fig. 11 – Fração mássica de CeO_2 em função da fração nominal de Ce. A reta é um ajuste por mínimos quadrados aos resultados experimentais.

Fig. 12 – Fração molar de Fe nos sítios tetraédricos da ferrita $CoFe_{2x}Ce_xO_4$ em função da fração nominal de Ce. A reta é um ajuste por mínimos quadrados aos dados experimentais.

Fig. 13 – Absorção de micro-ondas de amostras da ferrita $\text{CoFe}_{\underline{2}}$ _xCe_xO₄ em função da fração nominal de Ce. A curva é um ajuste dos resultados experimentais para $f_{Ce} \leq 0,3$ a uma função do segundo grau (veja o texto).

5. Conclusões

Neste trabalho foram investigadas as propriedades da ferrita de cobalto dopada com cério como um possível material para absorção de micro-ondas.

Os resultados mostraram que nem todos os átomos de cério são incorporados à estrutura da ferrita das amostras dopadas, pois também é produzida uma certa quantidade de CeO_2 , que aumenta linearmente com a fração molar nominal de Ce.

Observou-se que as amostras de ferrita mista de cobalto e cério apresentam uma absorção de micro-ondas maior que a ferrita de cobalto pura. A absorção aumenta com a concentração de Ce até uma fração molar de 0,22, provavelmente devido à redução da fração molar de átomos de Fe³⁺ em sítios tetraédricos. Nas amostras com concentração maior que 0,22 o valor da absorção diminui, o que é atribuído à grande quantidade de CeO₉ presente no material.

Agradecimentos

Os autores agradecem ao CNPq e à CAPES pelo apoio financeiro.

Referências Bibliográficas

- [1] H. Bayrakdar, Complex permittivity, complex permeability and microwave absorption properties of ferrite--paraffin polymer composites, J. Magn. Mater. 323 (2011) 1882.
- [2] H. Jing, M. Gao, X. Wang, W. Pei e W. Jiao, Preparation and Properties of Ce-doped Cobalt Ferrite, Chin. J. Mater. Res. 32 (2018) 449.
- [3] M. Kamran e M. Anis-ur-Rehman, Enhanced transport properties in Ce doped cobalt ferrites nanoparticles for resistive RAM applications, J. Alloys Compd. 822 (2020) 153583.
- [4] A. Hashhash e M. Kaiser, Influence of Ce-Substitution on Structural, Magnetic and Electrical Properties of Cobal Ferrite Nanoparticles, J. Electron. Mater. 45 (2016) 462.
- [5] A. Hashhash, I. Bobrikov, M. Yehia, M. Kaiser e E. Uyanga, Neutron diffraction and Mössbauer spectroscopy studies for Ce doped CoFe₉O₄ nanoparticles, J. Magn. Magn. Mater 503 (2020) 166624.