
RESUMO: Devido à crescente demanda por escalabilidade e distribuição de
dados, uma variedade de sistemas gerenciadores de banco de dados NOSQL
surgiram e vêm sendo usados com diferentes objetivos. Entre as abordagens
mais populares podemos citar a orientada a documentos, a orientada a
colunas e a chave-valor. Embora já existam vários sistemas de banco de dados
que adotam essas abordagens, até onde foi possível investigar, quase não há
diretrizes de modelagem de dados para eles. O algoritmo proposto neste artigo
analisa um conjunto de consultas pré-definido e, baseado nas cláusulas de
filtro dessas consultas, ele define as chaves primárias e de clustering para um
conjunto de visões materializadas. Adicionalmente, ele define um conjunto
pares <consulta, visão materializada> indicando quais consultas cada visão
materializada atende. Para avaliar o algoritmo, foi realizado um experimento
que compara o desempenho entre usar diversas tabelas para cada consulta e usar
as visões materializadas sugeridas pelo algoritmo. Os resultados mostraram-se
promissores e apontam para novas direções com relação à modelagem de dados
para sistemas NOSQL.

PALAVRAS-CHAVE: modelagem de dados, NOSQL, visões
materializadas.

ABSTRACT: Due to the increasing demand for scalability and distribution
of data, a variety of NOSQL database management systems have emerged and
are being used for different purposes. Some of the most popular systems are:
Document-oriented, Column-oriented and Key-value. Although there are many
of these systems, to the best of our knowledge, there are barely any guidelines
for data modeling for them. The proposed algorithm analyzes a predefined set
of queries and, based on their filter clauses, it defines the composition of the
primary and clustering keys for a set of materialized views. In addition, it
defines a set of <query, materialized view> pairs, indicating which queries
each materialized view addresses. To evaluate the algorithm, we report on an
experiment that compares the performance of having different tables for each
query and of having the materialized views suggested by the algorithm. It shows
promising results and points to new directions on data modeling for NOSQL
systems.

KEYWORDS: data modeling, NOSQL, materialized views.

Data Modeling for Cassandra
Thiago B Leão*, Maria Claudia R Cavalcanti, Raquel C G Pinto
Instituto Militar de Engenharia (IME),
Praça General Tibúrcio, 80, 22290-270,
Praia Vermelha, Rio de Janeiro, RJ, Brasil.
* thiagobleao@gmail.com

70 • RMCT

 VOL.38 Nº4 2021

1. Introduction

NOSQL came as an alternative to supply
a demand for scalability, availability,
and fault tolerance. It emerged as an

alternative to Relational database management
systems. Although there are many different NOSQL
solutions already available, to the best of our knowledge,
there are barely any guidelines for data modeling for
such solutions. Moreover, modeling guidelines for
Relational DBMS are not appropriate for NOSQL
approaches. While Relational modeling focuses on
creating distinct relations and references between
them, avoiding data redundancy, NOSQL approaches
stimulate data aggregation and duplication [1].

NOSQL database systems are classified according
to the way they store and access data. For each of these
approaches, there may be a different way to model
the data. There are already some initiatives to fill
the gap of data modeling for these different NOSQL

approaches [2][3][4]. In this last work, the authors
propose data modeling for the HBase system, which
is classified as a Column-oriented system. Cassandra
is also classified as a column-oriented system, but
after running some initial tests, we have seen that
Cassandra and HBase systems work differently and
the data modeling process for them cannot be the
same.

Therefore, in this paper, we propose some
guidelines to help the user with data modeling for
the Cassandra NOSQL system. We assume that there
is an initial schema that consists of a single table,
which results from a denormalized relational schema.
Additionally, we also consider a set of pre-defined
queries on this schema. The main contribution of
the proposed guidelines consists of a heuristic. It is
formalized as an algorithm that ranks possibilities of
primary keys and materialized views based on query
demands, aiming at the reduction of the number of
materialized views to be created and maintained.

 RMCT • 71

VOL.38 Nº4 2021

In order to evaluate the proposed algorithm, we
took a well-known benchmark for OLAP applications.
The idea was to evaluate performance gains among
different data modelings for the same relational
schema, including the one generated by the proposed
algorithm.

This paper is organized as follows. The second
section presents some concepts and technological
details that were used to develop the proposed
method. Section 3 describes some related work,
highlighting the contribution of our approach, which
is presented in section 4. Sections 5 and 6 present the
method evaluation scenario, the results, and their
discussion. Finally, section 7 concludes the work by
indicating future directions.

2. NOSQL databases
One of the main characteristics of NOSQL DBMS

is the ease of dealing with data scalability while
maintaining a good performance [1]. Some of these
systems use resources such as parallel architectures,
data sharding, and replication in order to gain
performance. On the other hand, in these systems,
maintaining consistency may be an issue and thus many
of them do not provide the ACID properties. They
usually provide what is called eventual consistency,
which allows the replicas and/or shards not to be
fully consistent all the time, but at some future point
in time. This disadvantage is acceptable to obtain
benefits such as availability and performance.

The main characteristic of column-oriented
databases is that they store tables in columns instead
of rows. In a relational database, each tuple (with
all its attribute values) is stored together. Thus,
to retrieve the values of part of these attributes, it
is necessary to retrieve the entire tuple, directly
affecting the query execution time [5]. Differently, in
a columnar database, the attribute values of a tuple
may be stored separately in columns. For instance, a
column may store all values of a single attribute and
their corresponding identifying keys. It also may be
organized in families of columns, where each family

may store a subset of attributes that compose the
tuple stored in the database. With this approach,
retrieving some attributes does not bring the whole
tuple, resulting in a better performance if compared
to relational databases.

Therefore, column-oriented databases tend to
perform better than relational databases, especially
when executing aggregation queries over some
attributes. Cassandra and HBase are examples of
column-oriented databases. In this work, we chose to
work with Cassandra because of its popularity among
the column-oriented databases (according to the DB-
Engines site 1).

In Cassandra, data is distributed over all nodes
of a cluster, according to the partition keys defined
on each table. When a node is added or removed,
all its data is automatically distributed over the
other available nodes. If a node fails, it will be
replaced instantly. Because of this, it is no longer
necessary to calculate and assign data to each node.
Cassandra’s architecture is known to be peer-to-peer
(it partitions tasks or workloads among peers equally)
and overcomes master-slave limitations by providing
high availability and massive scalability. Data is
replicated over multiple nodes in the cluster. Failed
nodes are detected by gossip protocols (peer-to-peer
communication protocol in which nodes periodically
exchange state information about themselves, and
about other nodes they know about), and those nodes
can be replaced instantly [6].

In Cassandra, data is indexed by the primary key,
which is composed of a partition key and clustering
keys. The partition key is used by Cassandra to define
how data will be partitioned over the nodes. The
clustering keys define how data will be ordered on the
partition. The primary key leads to the row where the
data is stored, and in each row, the data is divided
into columns and column families. Each column in
Cassandra has a name, a value, and a timestamp.
Both the value and the timestamp are provided by
the client application when data is inserted.

Recently, in Cassandra 3.0, the concept of Column
Family is also called Table. Unlike columns, the Tables

1 https://db-engines.com/en/ranking

72 • RMCT

 VOL.38 Nº4 2021

are not dynamic and must be previously declared in
a configuration file. They are the unit of abstraction
containing keyed rows that group together columns
of highly structured data. Tables have no defined
schema of column names and types supported. Lastly,
tables are grouped into Keyspaces. These Keyspaces
can be compared to Schemas in a relational database.

In Cassandra’s peer-to-peer model, each node
exchanges information across the cluster every second.
A sequentially written commit log on each node
captures write activity to ensure data durability[6].
Data is then indexed and written to an in-memory
structure called MemTable, which resembles a write-
back cache. Once the memory structure is full, the
data is written to disk in an SSTable (sorted string
table) data file (a file of key/value string pairs, sorted
by keys). All writes are automatically partitioned and
replicated throughout the cluster. When a read or
write request is made, any node in the cluster can
handle it. Through the key, the node that answered
the request can know which node possesses data
information.

Cassandra also enables the creation of materialized
views. The concept is the same as in relational
databases. The idea is to store the data according
to some predefined query, aiming at improving
performance. Each table may have one or more
materialized views.

Typically, the disadvantages of the usage of
materialized views are: an extra storage cost and
the time cost for the maintenance of consistent
materialized views, as updates occur in the base table.
In Cassandra, when the user updates the base table,
the materialized views will be updated automatically,
generating a lower maintenance cost at the user level.

3. Related work
This section summarizes and compares papers

presented as shown in Table 1. In order to fill the
data modeling gap for NOSQL databases, some
works chose to focus on a specific performance
demanding application: the OLAP application
[7] which has a heavy use of queries to retrieve

large volumes of data. Typically, it is based on the
multidimensional model, which includes the fact
and the dimension concepts. These concepts are
represented in the relational model as a star schema,
where the fact corresponds to a table as well as each
dimension. Each fact tuple refers to tuples in each
dimension.

The transformation of the multi-dimensional
conceptual model directly to the NOSQL logical
model is proposed by Chevalier et al [8]: each star
schema is mapped into a single table. The fact is
transformed into a column family, in which every
measure is a column. Each dimension is transformed
into a column family, in which every attribute is a
column. In addition, all aggregation possibilities
for that schema are also similarly mapped into a
separate table, as materialized views. However, in
this work, there is no intention in selecting a subset
of those materialized views, which implies high
costs concerning storage and materialized view
maintenance.

A complementary study over NOSQL
Multidimensional Modeling [9] presents three
different ways of logical modeling in a NOSQL
columnar database. The first one, named
normalized logical approach (NLA), adopts a vertical
fragmentation of a denormalized star schema and
stores the fact and each dimension into different
tables. The denormalized logical approach (DLA)
maps the star schema into a single table, which
stores the fact and dimensions all together. The
third one, called denormalized logical approach
using column families (DLA-CF), is similar to the
DLA approach, but the dimensions and the fact are
mapped, each one, to a different column family.

Another study [10] proposes a Cassandra
data modeling based on the queries. It also
defines modeling principles, mapping rules, and
mapping patterns. This methodology prioritizes
the applications workflow and its access patterns.
The normalization is removed, implying data
redundancy and materialized views usage over
joins. Because of those differences, it is necessary
a paradigm shift from modeling based purely on

 RMCT • 73

VOL.38 Nº4 2021

entities and relationships to modeling based on
queries.

On Scabora et al [4], three modelings are
used over HBase to evaluate the performance of
OLAP Queries. In addition to the DLA e DLA-CF
modelings presented on Dehdouh et al [9], which
are denominated SameCF e CNSSB respectively, the
authors propose the FactDate modeling as the third
alternative. It follows the same idea of the DLA-
CF alternative, but it gathers the fact and the date
dimension in the same column family. Experiments
with those three modeling alternatives showed that
the FactDate alternative has better performance
on queries that use few dimensions, i.e., the Date
dimension and one other. On the other hand, the
SameCF alternative has better performance on
queries that use a higher number of dimensions.

These related works were reported on modeling
performance of column-oriented databases, but
they do not approach how to deal with the data
distribution nor how to select materialized views
to get the best performance of the database. This
is a crucial factor to execute queries properly over
Cassandra. In this work, we present a set of guidelines
and a heuristic to help the modeler on selecting the
best distribution keys (partition and clustering keys)
and a set of materialized views for the Cassandra
database system.

4. Initial experiments
As previously mentioned [8], in order to perform

data modeling, it is a good practice to start with a
conceptual schema of the data and then proceed to
the data modeling, where the conceptual schema
elements are mapped into a logical/physical schema
of a specific DBMS.

Once a logical schema is designed, it is important
to know the typical/critical queries that should
be supported by the application. From these, it is
possible to define logical/physical schema alternatives
(candidate schemas) to the database. In the case of a
column-oriented DBMS, the choice of such schema
is not trivial. A careful analysis is necessary to

identify the most appropriate logical/physical schema
according to the application demand.

In short, data modeling consists of two steps. The
first step is concerned with conceiving the first version
of a logical schema. Then, the second one focuses on
performance issues and on attending to application
demands, such as addressing a set of critical queries.
In this work, we address just the second step for the
Cassandra DBMS. We assume that an initial logical
schema is already available, and then we apply a set of
heuristics in the form of an algorithm.

Tab. 1 – related work comparison.
Work Modeling Materialized Views DBMS

Chevalier et
al [8]

Conceptual/
Logical - MongoDB

and HBase
Dehdouh et

al [9]
Conceptual/

Logical - HBase

Chebotko et
al [10] Logical - Cassandra

Scabora et
al [4] Logical Materialized Views with an

external application HBase

In order to develop such an algorithm, we
performed some initial experiments for a typical
OLAP application, which are detailed in this Section.
To guarantee that we would start with the best initial
logical schema, we explored the CNSSB datasets
[11] and queries, considering three logical schemas,
as proposed in [9] and [4]: SameCF, DLA-CF, and
FactDate. Based on the results of such experiments
detailed in Section 4.2, we found out that the best
initial logical schema was the SameCF schema.

Then, assuming the SameCF schema as the initial
schema, we observed the performance gains while
using partition and clustering keys alternatives and
while querying on materialized views. This discussion is
presented in Section 4.2. Then, in Section 5, we identify
some heuristics for choosing those keys and materialized
views to address most of the queries and reduce the
set of materialized views. Finally, these heuristics were
formalized in the algorithm presented in Section 5.

4.1 Initial logical schema definition

All three models (SameCF, DLA-CR, and
FactDate)2 were populated with data generated from

74 • RMCT

 VOL.38 Nº4 2021

the DBGen application of the CNSSB3 [11]. After
populating the models, the thirteen CNSSB queries,
organized in 4 typical sets, Q1, Q2, Q3, and Q4 [11],
were executed five times on each model to measure
their performance average. Experimentally, it was
noticed that there was not a large variation within a
few executions. Thus, five executions seemed to be
sufficient to characterize the performance.

As it can be seen in the graph of figure 1, the queries
had similar behavior in the DLA-CF and FactDate
models, except for the Q1 set of queries that benefits
from the fact it does not require joins to perform
the queries. The SameCF model can obtain better
performance in sets Q2, Q3, and Q4, showing that the
use of joins in Cassandra implies a worse performance
of the query. Analyzing the query behavior, we can
note the influence of the Partition Key and Clustering
Keys. Cassandra not only partitions the data and
distributes them among the nodes according to the
Partition Key but also orders the data in the partition
according to the Clustering Key. Queries that use
Partition Key attributes as filters usually perform
better. However, those queries performance may be
reduced if they also use other attributes as filters.
Therefore, query performance is highly dependent
on the attributes used and on the fact that they are
part of the Partition or Clustering Keys.

Since the SameCF model had an average superior
performance to the DLA-CF andFactDate, this model
was chosen as the initial logical model. From this
model, an evaluation of the use of materialized views
is presented in the following section. Then, a heuristic
is defined based on the use of materialized views
according to the SameCF model.

4.2 Experiments results

Analyzing the SameCF model, we can see that the
way the attributes are arranged in the PrimaryKey
directly influences queries performance. A query that
filters on an attribute that belongs to the Partition

Key will perform well as opposed to a query that
filters on an attribute that is positioned at the end
of the Clustering Key [6]. The Clustering Key sorts
the records of a partition according to each attribute
defined in it, that is, it is an ordered list of attributes
that determines the order of the records in the disk.
From the graph of figure 2, in the set of queries QG1,
there was a significant variation in the performance
of the queries. Queries 1.1 and 1.3 performed well
because their filter attributes were those used for
the formation of the Partition Key (year) and the
Clustering Key (discount, quantity), in this case, the
first attributes. On the other hand, query 1.2 had the
worst performance for two reasons: first, since it does
not include the Partition Key attribute as a filter, and
second, because the attribute yearmonthnum is an
attribute unfavorably positioned in the Clustering Key,
that is, it is not an attribute that is positioned right at
the beginning of the Clustering Key, impairing filter
performance.

Regarding the QG2 set, queries showed the best
average performance, with times very close to each
other. On the other hand, the QG3 was the worst
set. Interestingly, query 3.1 had one of the best
performances concerning all queries of all sets. This is
explained by the fact that the attributes of the filters in
this query are either an attribute of the Partition Key
(year) or belong to the first positions of the Clustering
Key (supregion, region). Although queries 3.2 and
3.3 used a filter based on the Partition Key attribute
(year), the other attributes used as filters belong to
unfavorable positions in the Clustering Key, which
explains their bad performances. Query 3.4 does not
use the Partition Key (year) attribute as a filter but
as an ordering/grouping attribute and, in addition, it
also filters data by unfavorably positioned Clustering
Key attributes.

Finally, when analyzing the QG4 set, we note that
queries 4.1 and 4.2 had a good performance. This is
probably due to the fact that those queries filter using
the first attribute of the Clustering Key. The use of

2https://db-engines.com/en/ranking
3https://github.com/thiagobleao/cnssb_dataset

 RMCT • 75

VOL.38 Nº4 2021

the Partition Key (year) in query 4.2 may have led it to
perform better. Query 4.3 had the worst performance
because it used only unfavorable positioned attributes
of the Clustering Key. However, interestingly, it uses
the Partition Key (year) as filter, which shows that only
using the Partition Key will not necessarily ensure the
best performance for a query.

Fig. 1 – Query performance on each model

Fig. 2 – Queries performance in SameCF model

Fig. 3 – Materialized view performance

To improve the performance of the queries, it is
possible to create materialized views from a table in
Cassandra. This allows the choice of attributes that will
be part of each materialized view and the reorganization

of the Partition and Clustering Keys for that materialized
view. Using the criterion proposed by Baralis et al [12],
we chose the worst performance set of queries (Q3) as the
basis for the creation of the materialized view. The graph
of figure 3 shows the performance of these queries on the
materialized view and compares them to the base table.
When performing the four queries of group Q3 on the
created materialized view, we can observe that query 3.1
loses performance. This is explained using the modified
Clustering Key. In addition, this is also the reason for
the reduction of the execution time of the other queries.
That is, query 3.1 can continue to be executed directly
on the base table and the other queries would do better if
executed on the materialized view.

We can conclude that using joins through applications
is not ideal since there is a loss of performance. That said,
the ideal for modeling in Cassandra is to denormalize the
data and store them in a single table.

5. Guidelines for cassandra
Usually, at the logical modeling phase of a database

design, the idea is to depart from a conceptual DBMS
independent view of the application and arrive at a
DBMS dependent schema of it. In the context of a
relational database, it consists of designing a set of tables
and attributes, whereas, in the context of a columnar
database approach, this means choosing which column
families should be created. Assuming an initial columnar
logical schema is already chosen, the next phase of a
database design is the physical schema design, which
focuses on the performance of the database for a given set
of applications, queries, and activities. In the Cassandra
case, this includes defining materialized views.

Based on the results of the initial experiments,
reported in subsection 4.2, it was possible to devise
some initial guidelines, concerning the choice of a
logical/physical schema for Cassandra DBMS.

Guideline 1. Denormalize the logical schema.
Considering an initial conceptual-logical mapping

as the logical initial schema, it is recommended to
denormalize this schema, in such a way that it is able
to answer a set of critical queries or demands.

76 • RMCT

 VOL.38 Nº4 2021

Guideline 2. Define the primary key attributes.
Based on the set of critical queries, analyze the most

frequently used attributes on the query constraints
and then choose the ones to form the primary key.

Guideline 3. Define a set of materialized views.
The idea is to group queries, according to their

common attributes, i.e., attributes that are present in
selecting and filtering clauses. These groups are the
basis for the choice of the materialized views. Once
defined, these materialized views may be created.

Guideline 4. Define a query redirection policy.
Given a set of materialized views, a query redirection

mechanism could benefit from those materialized
views, by rewriting and redirecting the query to the
materialized view that can probably provide the best
performance for that query.

In order to help the designer with guidelines 2 and
3, in this section we present Algorithm 1. It is based
on Cassandra query execution constraints, previously
presented in Section 2. It takes as input an initial
denormalized logical schema, as suggested by guideline
1, and a set of pre-defined critical/typical queries, and
its output may be used as the input for guideline 4.

Cassandra supports query execution only directly
into a partition, that is, it demands an equality constraint
over the partition key. This is the first premise adopted
to suggest a materialized view. Another premise based on
Cassandra’s limitations is the use of inequality constraints,
which can only appear once in each query. In the case of
constraints with the IN clause, it may appear along with
another inequality constraint, and this must be the last
one to be applied in the query expression, and only in the
Clustering Key.

Therefore, based on these initial premises, Algorithm
1 finds possible combinations of attributes to form the
primary key for each materialized view. The main idea
is to identify groups of queries, of which constraints use
attributes in common, and for each group, the algorithm
suggests a reduced number of materialized views, with
their respective primary keys. In addition, for each
materialized view, it suggests the set of queries that are
associated with it, i.e., it indicates to which materialized
view each query should be redirected to (or rewritten to).

The following variables are used in Algorithm 1

(figure 4):
• Q: set of critical/typical queries to be executed on

Cassandra;
• v: index of the materialized view under construction, 1

≤ v ≤ |Q|;
• AEx: set of equality attributes, i.e., attributes that are

involved in equality-based constraints on a query qx
expression, which will compose the set of attributes
AEv of the primary key of the associated materialized
materialized view v;

• AEv: set of equality-based attributes of materialized
view v;

• ANEx: set of non-equality attributes, i.e., attributes
that are involved in inequality-based constraints on
a query qx expression, which will compose the set
of attributes ANEv primary key of the associated
materialized view v;

• ANEv: set of inequality-based attributes of materialized
view v;

• Ax: set of attributes of query qx, where Ax = AEx ∪
ANEx;

• Av: set of attributes that will compose the primary key
of the associated materialized view, where Av = AEv ∪
ANEv;

• Qv: set of queries that will be addressed by the
materialized view v;

• V : set of materialized views to be generated, formed by
a set of pairs (Av,Qv);
Q´ : set of queries that are not supported by none of

the existing materialized view in V ;
In step I, Q´ is initialized with the complete set of

queries, then the algorithm iterates over the Q´ set until
it becomes empty. Each iteration on Q´ (step I) aims at
building a new materialized view v and its corresponding
primary key. Every query qx from Q´ is analyzed by
the algorithm concerning its attributes involved in
equality and inequality constraints until the key for
the materialized view under construction is formed.
Depending on the evolution of the key under construction
for the materialized view of the moment (v), query qx
may be treated in steps II, III, and IV. If it satisfies the
constraints for one of these steps, it is included in the set
of queries (Qv) that will be addressed by materialized view
v and removed from the Q´ set.

 RMCT • 77

VOL.38 Nº4 2021

The first query of each iteration on Q´ is always treated
within step II, where the sets of equality/inequality-based
attributes are initialized for the materialized view of the
moment. Once the first attributes for a materialized view
are defined, then the next Q´ queries are treated by the
following steps, depending on if they have attributes in
common with the materialized view under construction.
Step III will add queries that bring to the materialized
view one attribute involved in an inequality constraint at
the most, and those queries have attributes in common
with the set of attributes of the materialized view (Av ⊆ Ax
or Ax ⊆ Av). Step IV deals with queries that bring to the
materialized view more than one attribute involved in an
inequality constraint. In this case, the query under analysis
needs to have the same equality constraint attributes.
Queries that did not fit within any of the previous steps
remain in Q ,́ and they will be analyzed again for a new
iteration, i.e., for the creation of a new materialized view.

Fig. 4 – Algorithm 1

Finally, at the end of each while iteration, in step
(V), the set of attributes that compose the materialized
view Av is created and the set of materialized views V
is incremented with the new pair (materialized view
(Av), query (Qv)).

6. Experiments with materialized views
in cassandra

In this section, we present experiments’ results
to evaluate the heuristics proposed in the previous
section. The purpose of these experiments is to
compare the performance of three logical models
with different input rates of reading and writing
operations, one of which uses the proposed heuristics.

The experiments were carried out in a
computational cluster with four nodes, each with 158
GB of RAM, 64 CPUs of 2.4 GHz. The operating
system of each node is CentOS, with the DBMS
Cassandra (version 3.0). The dataset used during
the experiments was generated by the dbgen of the
CNSSB [11] without any post-treatment since it is
already generated on a single denormalized table in
a CSV file.

6.1 Heuristic application

Using the CNSSB schema with its thirteen
queries4, the proposed heuristic created a set of nine
materialized views. Each materialized view has a
different primary key that will allow the execution
of one or more queries. None of these queries could
be performed by more than one materialized view.
Therefore, a minimum number of materialized views
was generated to meet all the specified queries.

Next, it is exemplified the generation of a
materialized view formed by the following two queries:
1. select year, nation, revenue, supplycost from

cnssb.nlineorder where region = ’AMERICA’
and suppregion = ’AMERICA’ and mfgr in
(’MFGR#1’,’MFGR#2’)

2. select year, nation, revenue, supplycost from cnssb.
nlineorder where region = ’AMERICA’ and

4 https://github.com/thiagobleao/rmct_appendix/blob/main/rmct_apendix.pdf

78 • RMCT

 VOL.38 Nº4 2021

suppregion = ’AMERICA’ and year in (1997,1998)
and mfgr in (’MFGR#1’,’MFGR#2’)
Both queries have three attributes in common in

equality filters: region, suppregion, and mfgr. These
attributes will initially compose the primary key, one
of them as the partition key, and the other attributes
will begin the clustering key. The query (2) also has an
equality filter over the year attribute. This attribute
must also be included in the clustering key since it
is not used by the query (1). The composition of the
primary key of the materialized view that fits the two
queries is:
• Partition Key: region
• Clustering Key: suppregion, mfgr, year

The next example is based on a group of queries
that use equality and inequality filters:
1. select discount,quantity from cnssb.nlineorder

where year = 1993 and quantity < 25 and discount
between 1 and 3

2. select extendedprice,discount as revenue from
cnssb.nlineorder where year = 1994 and
yearmonth = ’Jan1994’ and quantity between 26
and 35 and discount between 4 and 6

3. select extendedprice, discount as revenue from
cnssb.nlineorder where year = 1994 and
weeknuminyear = 6 and quantity between 26 and
35 and discount between 5 and 7
If executed as presented, these queries will not run

in Cassandra since this DBMS restricts comparisons
of “greater than” and “less than” types only to the last
field of the key to be filtered. Because of this, these
three queries were adapted by changing the “quantity
<” to “quantity in”. According to Cassandra’s
constraints, the filter on the discount attribute could
be made using “greater than” or“less than” since
it is the last attribute of the clustering key of the
materialized view. But in order not to assume that
this will necessarily be done by the heuristic, it was
decided to adapt this filter also to use the“in” clause.
After these adaptations, the queries became as follows:
1. select discount,quantity from cnssb.nlineorder

where year = 1993 and yearmonth in (’Jan1993’,
’Feb1993’, ’Mar1993’, ’Apr1993’, ’May1993’,
’Jun1993’, ’Jul1993’, ’Aug1993’, ’Sep1993’,

’Oct1993’, ’Nov1993’, ’Dec1993’) and quantity in
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24) and discount in(1, 2, 3)

2. select extendedprice,discount as revenue from
cnssb.nlineorder where year = 1994 and
yearmonth = ’Jan1994’ and quantity in (26, 27,
28, 29, 30, 31, 32, 33, 34, 35) and discount in (4,
5, 6)

3. select extendedprice, discount as revenue from
cnssb.nlineorder where year = 1994 and
weeknuminyear = 6 and quantity in (26, 27, 28,
29, 30, 31, 32, 33, 34, 35) and discount in (5,6,7)

Regarding the application of the heuristic on
these three queries, another adaptation was made in
the query (1) so that it could be served by the same
materialized view of the query (2). Originally, query
(1) does not have the filter on the attribute yearmonth.
However, it could be included in query (1) to achieve
the same result and to add a few restrictions to query
(1). The same cannot be done to query (3) on the
weeknuminyear filter. While the yearmonth filter
represents the months of one year (maximum of twelve
restrictions), the weeknuminyear filter represents the
number of the week of a year (approximately fifty-two
restrictions). The last filter has a very high number
of restrictions, escaping much from a scenario closer
to a real-world application. In this way, the heuristic
generated two materialized views, one to answer
queries (1) and (2) and another to answer the query
(3).

The queries (1) and (2), after the aforementioned
adaptations, have equality filters over the following
attributes: year and yearmonth. These attributes will
compose the primary key of the materialized view,
with one being the partition key and the other being
the clustering key. These queries also have two non-
equality filters: quantity and discount. Both attributes
will be included in the clustering key, right after
the equality attribute that was included in it. The
composition of the primary key of the vision that will
support these queries is:
• Partition Key: year
• Clustering Key: yearmonth, quantity, discount

Query (3) should correspond to a materialized

 RMCT • 79

VOL.38 Nº4 2021

view that will only attend to that query. The key
of this materialized view will be composed of the
attributes “year” and “weeknuminyear”. One of them
will be chosen for the partition key. The other one
will be the first attribute in the clustering key of that
view, and it will be followed by the attributes quantity
and discount (involved in inequality conditions). The
composition of the primary key of the view that will
support this query is:
• Partition Key: year
• Clustering Key: weeknuminyear, quantity, discount

Like the examples cited above, nine materialized
views were created from the application of the
proposed heuristic on all of the thirteen queries,
as shown in table 2. After the implementation of
the three models in Cassandra, the five workloads
were executed in each modeling mode to evaluate
the proposed heuristic and verify its performance
compared with the other models.

6.2 Evaluation scenarios

To evaluate the performance of the use of the
heuristic in Cassandra, three different scenarios
were used. For each scenario, a keyspace was created
with a replication equal to 2, that is, each record was
replicated twice in the cluster.
1.Scenario 1: Heuristic generated model, with a

minimum of materialized views that can handle
all the queries.

2. Scenario 2: Modeling with a materialized view for
each query.

3. Scenario 3: Modeling with a table for each query.
Five workloads were developed to evaluate different

aspects of each scenario. Each workload represents
a combination of reading and writing operations.
The objective is to analyze the performance of the
evaluated models considering different possibilities of
operations that are made over a database.

All workloads are based on the same dataset
(CNSSB) to ensure that they are executed under the
same conditions. In this way, it is expected to identify
which scenario provides the best performance for
each workload.

The following workloads were used:
• Only read operations.
• Most read operations: 75% read and 25% write

operations.
• Read and write operations equal: 50% read and

50% write operations.
• Most write operations: 25% read and 75% write

operations. —Only write operations.
These workloads were developed using the CNSSB

dataset file as a basis for writing operations and
CNSSB queries of reading operations. The execution
of each workload was performed through a program
written in the Python language that performs all
operations in parallel.

6.3 Performance analysis

Initially, the performance of the three scenarios is
verified in a workload with reading operations only.
The execution performance of the three scenarios is
very close and took around 10 minutes. Considering
that each scenario is modeled to attend all the proposed
queries and Cassandra itself ensures that a query will
be executed only if it has a good performance, model
variations do not affect the execution performance of
the queries. However, read operations concurs with
the update and insert operations and, in this case,
there is a usual performance loss.

Tab 2: materialized views created from the heuristic

View Partition Key Clustering Key Supported
Queries

V1 suppregion region,mfgr,year 4.1, 4.2
V2 suppcity city,year,yearmonth 3.3, 3.4
V3 suppregion brand1 2.2, 2.3
V4 year yearmonth,quantity,discount 1.1, 1.2
V5 year weeknuminyear,quantity,discount 1.3
V6 suppregion category 2.1
V7 suppregion region,year 3.1
V8 year suppnation,region,category 4.3
V9 suppnation nation,year 3.2

Considering the workloads that include writing
operations, there are two different situations: write
operations that result from existing records (updates)
and write operations that are inserts of new registries
(inserts). Due to the fact that Cassandra does not

80 • RMCT

 VOL.38 Nº4 2021

read the existing values when running an update
[6] when the number of updates is greater than the
number of inserts, the table-based modeling tends
to offer better performance, even when it runs more
operations. However, the use of materialized views
makes Cassandra lose this feature [13], leading to a
worse performance. Due to these differences, two
comparisons were made with write operations in
workloads, one performing only updates and another
only inserting new records.

Figure 5 shows the results of the execution of the
workloads with inserts. This graph uses a logarithmic
scale, but the absolute values of the runtime in minutes
are highlighted in each bar. From these results, it was
observed that scenario 3 (table-based modeling) is
clearly the most affected by the increase of writing
operations. This scenario has a table for each query
and these tables are completely independent of each
other. Therefore, each writing to be done in the
database must be done thirteen times in order to
update all tables. This fact explains the significant
increase of the execution time in this scenario, as the
number of write operations increases.

Still considering figure 5, it was verified that
scenario 1 (modeling generated by the heuristic)
performs better than scenario 2 (modeling with a
materialized view per query). This improvement
in performance ranges from 13% to 35%, and it is
justified by the fact that in scenario 2 there is a greater
number of materialized views. This does not imply the
execution of a greater number of write operations, as it
occurs in scenario 3. The replication of the updates is
done automatically by Cassandra internally. Although
this replication is much more efficient than writing
separately in each table, it has a running cost. As
scenario 2 has more materialized views than scenario
1, this cost ends up directly affecting the performance
in scenario 2.

Figure 6 shows the results of the executions of
the workloads with updates. This graph also uses
a logarithmic scale, and the values of the runtime
in minutes are highlighted in each bar. In the case
of existing records updates, there is a change of
behavior considering the operations of new records

insertions. It was observed that scenario 3 performed
better compared to other scenarios. This is because
Cassandra implements updates on materialized views
as follows: it performs reading the data already present
in the materialized views, updates it, removes the old
record and inserts the new one. While without the use
of materialized views, Cassandra simply inserts the
record with a most recent timestamp, and this is the
record that will be returned to the queries.

Fig. 5 – Graph of workloads with new registries insert operations

Fig. 6 – Graph of workloads with existing registries update operations

Comparing scenarios 1 and 2, it can be observed
in figure 6 that scenario 1 presents a better
performance in all situations, ranging from 14% to
31%, performance similar to the use of inserts. In
addition, there is an increase in performance gain as
the number of updates increases.

Although scenario 3 performs better than
scenarios 1 and 2, the use of the table-based
modeling leads to a higher cost of maintaining the
data since a change in one table should be reflected

 RMCT • 81

VOL.38 Nº4 2021

in all other tables created, losing Cassandra’s
feature of syncing materialized views.

We can observe that a factor that influences the
number of materialized views suggested by the
heuristic is the variety of attributes in the query filters.
The smaller the variety of these attributes, the smaller
the number of materialized views generated by the
heuristic, ensuring a more significant performance of
scenario 1 compared to scenario 2, especially when
there are a lot of write operations.

7. Conclusion
This work presents a set of guidelines to support

the logical/physical design of database schemas for
Cassandra DBMS. It includes a heuristic for data
modeling based on specific queries to define a set of
materialized views and their corresponding primary
keys.

The CNSSB benchmark dataset and its queries
were used to evaluate the proposed heuristic. The
experiments used workloads varying the rate of read/
write operations. The results showed that the more
insert operations the better was the performance
of the heuristic. On the other hand, when most of
the operations are updated, the use of a table for
each query performs better. However, it is worth

saying that the reduced number of materialized
views (heuristic scenario) is still a better choice if
compared to the use of all possible materialized views.
Therefore, the proposed guidelines bring light to the
data modeling for Cassandra DBMS. Moreover, in the
case of analytical applications, where write operations
are usually a large set of inserts, the heuristic is
particularly useful.

For future work, we plan to apply the heuristic with
different datasets, sets of queries, and applications like
OLTP. Also, we intend to investigate the application
of the heuristic with adjustments, over different
NOSQL DBMS that behave similarly to Cassandra.
Additionally, we intend to evaluate the impact of
Cassandra replication factor and how its variation
may affect query performance and memory usage.

Acknowledgments
The authors would like to thank the Brazilian

agency CAPES for the financial support and Cristina
Dutra de Aguiar Ciferri for her careful review of this
work. In addition, thanks to the Brazilian Army for
the use of the computational infrastructure of the
High-Performance Computing Laboratory for Cyber
Defense, funded with resources from the Brazilian
Army Strategic Project.

References
[1] Pramod J. Sadalage and Martin Fowler. 2012. NoSQL Distilled: A Brief Guide to the Emerging World of

Polyglot Persistence (1st ed.). Addison-Wesley Professional
[2] R. A. S. N. Soransso and Maria Cláudia Cavalcanti. 2018. Data modeling for analytical queries on document-

-oriented DBMS. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC 2018, Pau,
France, April 09-13, 2018. 541–548.

[3] Silas P. Lima Filho, Maria Cláudia Cavalcanti, and Cláudia Marcela Justel. 2018. Managing Graph Modeling Al-
ternatives for Link Prediction. In Proceedings of the 20th International Conference on Enterprise Information
Systems, ICEIS 2018, Funchal, Madeira, Portugal, March 21-24, 2018, Volume 2. 71–80.

[4] Lucas C. Scabora, Jaqueline Joice Brito, Ricardo Rodrigues Ciferri, and Cristina Dutra de Aguiar Ciferri. 2016.
Physical Data Warehouse Design on NoSQL Databases - OLAP Query Processing over HBase. In Proc. of the
18th Int. Conf. on Enterprise Information Syst. (ICEIS) (1 ed.). 111–118.

[5] Gheorghe Matei. 2010. Column-Oriented Databases, an Alternative for Analytical Environment. Database Sys-
tems Journal 1 (2010), 3–16.

[6] DataStax. 2018. How Cassandra reads and writes data. https://docs.datastax.com/en//cassandra/3.0/cassandra/
dml/dmlHowDataWritten.html 13 jul. de 2018.

[7] R. Kimball and M. Ross. The Data Warehouse Toolkit: the Definitive Guide to Dimensional Modeling. John
Wiley & Sons, New York, USA, 3 edition, 2013.

82 • RMCT

 VOL.38 Nº4 2021

[8] Max Chevalier, Mohammed El Malki, Arlind Kopliku, Olivier Teste, and Ronan Tournier. 2015. Implementing
Multidimensional Data Warehouses into NoSQL. In ICEIS 2015 - Proceedings of the 17th International Con-
ference on Enterprise Information Systems, Volume 1, Barcelona, Spain, 27-30 April, 2015 (1 ed.). 172–183.

[9] Khaled Dehdouh, Fadila Bentayeb, Omar Boussaid, and Nadia Kabachi. 2015. Using the column oriented
NoSQL model for implementing big data warehouses. In Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA) (1 ed.). The Steering Committee of
The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp),
469.

[10] A. Chebotko, A. Kashlev, and S. Lu. 2015. A Big Data Modeling Methodology for Apache Cassandra. In 2015
IEEE International Congress on Big Data (1 ed.). 238–245. https://doi.org/10.1109/BigDataCongress.2015.41

[11] Khaled Dehdouh, Fadila Bentayeb, and Omar Boussaid. 2014. Columnar NoSQL Star Schema Benchmark. In
Model and Data Engineering (1 ed.). The Steering Committee of The World Congress in Computer Science,
Computer Engineering and Applied Computing (WorldComp), Springer International Publishing, 281–288.

[12] Elena Baralis, Stefano Paraboschi, and Ernest Teniente. 1997. Materialized Views Selection in a Multidimensio-
nal Database. In VLDB’97, Proceedings of 23rd International Conference on Very Large Data Bases, August
25-29, 1997, Athens, Greece (1 ed.). 156–165.

[13] Jonathan Ellis. 2018. Materialized View Performance in Cassandra 3.x.https://www.datastax.com/dev/blog/ma-
terialized-view-performance-in-cassandra-3-x13 jul. de 2018.

