
RESUMO: Devido à crescente demanda por escalabilidade e distribuição de 
dados, uma variedade de sistemas gerenciadores de banco de dados NOSQL 
surgiram e vêm sendo usados com diferentes objetivos. Entre as abordagens 
mais populares podemos citar a orientada a documentos, a orientada a 
colunas e a chave-valor. Embora já existam vários sistemas de banco de dados 
que adotam essas abordagens, até onde foi possível investigar, quase não há 
diretrizes de modelagem de dados para eles. O algoritmo proposto neste artigo 
analisa um conjunto de consultas pré-definido e, baseado nas cláusulas de 
filtro dessas consultas, ele define as chaves primárias e de clustering para um 
conjunto de  visões materializadas. Adicionalmente, ele define um conjunto 
pares <consulta, visão materializada>  indicando quais consultas cada visão 
materializada atende. Para avaliar o algoritmo, foi realizado um experimento 
que compara o desempenho entre usar diversas tabelas para cada consulta e usar 
as visões materializadas sugeridas pelo algoritmo. Os resultados mostraram-se 
promissores e apontam para novas direções com relação à modelagem de dados 
para sistemas NOSQL.

PALAVRAS-CHAVE: modelagem de dados, NOSQL, visões 
materializadas.

ABSTRACT: Due to the increasing demand for scalability and distribution 
of data, a variety of NOSQL database management systems have emerged and 
are being used for different purposes. Some of the most popular systems are: 
Document-oriented, Column-oriented and Key-value. Although there are many 
of these systems, to the best of our knowledge, there are barely any guidelines 
for data modeling for them. The proposed algorithm analyzes a predefined set 
of queries and, based on their filter clauses, it defines the composition of the 
primary and clustering keys for a set of materialized views. In addition, it 
defines a set of <query, materialized view> pairs, indicating which queries 
each materialized view addresses. To evaluate the algorithm, we report on an 
experiment that compares the performance of having different tables for each 
query and of having the materialized views suggested by the algorithm. It shows 
promising results and points to new directions on data modeling for NOSQL 
systems.
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1. Introduction

NOSQL came as an alternative to supply 
a demand for scalability, availability, 
and fault tolerance. It emerged as an 

alternative to Relational database management 
systems. Although there are many different NOSQL 
solutions already available, to the best of our knowledge, 
there are barely any guidelines for data modeling for 
such solutions. Moreover, modeling guidelines for 
Relational DBMS are not appropriate for NOSQL 
approaches. While Relational modeling focuses on 
creating distinct relations and references between 
them, avoiding data redundancy, NOSQL approaches 
stimulate data aggregation and duplication [1].

NOSQL database systems are classified according 
to the way they store and access data. For each of these 
approaches, there may be a different way to model 
the data. There are already some initiatives to fill 
the gap of data modeling for these different NOSQL 

approaches [2][3][4]. In this last work, the authors 
propose data modeling for the HBase system, which 
is classified as a Column-oriented system. Cassandra 
is also classified as a column-oriented system, but 
after running some initial tests, we have seen that 
Cassandra and HBase systems work differently and 
the data modeling process for them cannot be the 
same.

Therefore, in this paper, we propose some 
guidelines to help the user with data modeling for 
the Cassandra NOSQL system. We assume that there 
is an initial schema that consists of a single table, 
which results from a denormalized relational schema. 
Additionally, we also consider a set of pre-defined 
queries on this schema. The main contribution of 
the proposed guidelines consists of a heuristic. It is 
formalized as an algorithm that ranks possibilities of 
primary keys and materialized views based on query 
demands, aiming at the reduction of the number of 
materialized views to be created and maintained.
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In order to evaluate the proposed algorithm, we 
took a well-known benchmark for OLAP applications. 
The idea was to evaluate performance gains among 
different data modelings for the same relational 
schema, including the one generated by the proposed 
algorithm.

This paper is organized as follows. The second 
section presents some concepts and technological 
details that were used to develop the proposed 
method. Section 3 describes some related work, 
highlighting the contribution of our approach, which 
is presented in section 4. Sections 5 and 6 present the 
method evaluation scenario, the results, and their 
discussion. Finally, section 7 concludes the work by 
indicating future directions.

2. NOSQL databases
One of the main characteristics of NOSQL DBMS 

is the ease of dealing with data scalability while 
maintaining a good performance [1]. Some of these 
systems use resources such as parallel architectures, 
data sharding, and replication in order to gain 
performance. On the other hand, in these systems, 
maintaining consistency may be an issue and thus many 
of them do not provide the ACID properties. They 
usually provide what is called eventual consistency, 
which allows the replicas and/or shards  not to be 
fully consistent all the time, but at some future point 
in time. This disadvantage is acceptable to obtain 
benefits such as availability and performance.

The main characteristic of column-oriented 
databases is that they store tables in columns instead 
of rows. In a relational database, each tuple (with 
all its attribute values) is stored together. Thus, 
to retrieve the values of part of these attributes, it 
is necessary to retrieve the entire tuple, directly 
affecting the query execution time [5]. Differently, in 
a columnar database, the attribute values of a tuple 
may be stored separately in columns. For instance, a 
column may store all values of a single attribute and 
their corresponding identifying keys. It also may be 
organized in families of columns, where each family 

may store a subset of attributes that compose the 
tuple stored in the database. With this approach, 
retrieving some attributes does not bring the whole 
tuple, resulting in a better performance if compared 
to relational databases.

Therefore, column-oriented databases tend to 
perform better than relational databases, especially 
when executing aggregation queries over some 
attributes. Cassandra and HBase are examples of 
column-oriented databases. In this work, we chose to 
work with Cassandra because of its popularity among 
the column-oriented databases (according to the DB-
Engines site 1).

In Cassandra, data is distributed over all nodes 
of a cluster, according to the partition keys defined 
on each table. When a node is added or removed, 
all its data is automatically distributed over the 
other available nodes. If a node fails, it will be 
replaced instantly. Because of this, it is no longer 
necessary to calculate and assign data to each node. 
Cassandra’s architecture is known to be peer-to-peer 
(it partitions tasks or workloads among peers equally) 
and overcomes master-slave limitations by providing 
high availability and massive scalability. Data is 
replicated over multiple nodes in the cluster. Failed 
nodes are detected by gossip protocols (peer-to-peer 
communication protocol in which nodes periodically 
exchange state information about themselves, and 
about other nodes they know about), and those nodes 
can be replaced instantly [6].

In Cassandra, data is indexed by the primary key, 
which is composed of a partition key and clustering 
keys. The partition key is used by Cassandra to define 
how data will be partitioned over the nodes. The 
clustering keys define how data will be ordered on the 
partition. The primary key leads to the row where the 
data is stored, and in each row, the data is divided 
into columns and column families. Each column in 
Cassandra has a name, a value, and a timestamp. 
Both the value and the timestamp are provided by 
the client application when data is inserted.

Recently, in Cassandra 3.0, the concept of Column 
Family is also called Table. Unlike columns, the Tables 

1 https://db-engines.com/en/ranking
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are not dynamic and must be previously declared in 
a configuration file. They are the unit of abstraction 
containing keyed rows that group together columns 
of highly structured data. Tables have no defined 
schema of column names and types supported. Lastly, 
tables are grouped into Keyspaces. These Keyspaces 
can be compared to Schemas in a relational database.

In Cassandra’s peer-to-peer model, each node 
exchanges information across the cluster every second. 
A sequentially written commit log on each node 
captures write activity to ensure data durability[6]. 
Data is then indexed and written to an in-memory 
structure called MemTable, which resembles a write-
back cache. Once the memory structure is full, the 
data is written to disk in an SSTable (sorted string 
table) data file (a file of key/value string pairs, sorted 
by keys). All writes are automatically partitioned and 
replicated throughout the cluster. When a read or 
write request is made, any node in the cluster can 
handle it. Through the key, the node that answered 
the request can know which node possesses data 
information.

Cassandra also enables the creation of materialized 
views. The concept is the same as in relational 
databases. The idea is to store the data according 
to some predefined query, aiming at improving 
performance. Each table may have one or more 
materialized views.

Typically, the disadvantages of the usage of 
materialized views are: an extra storage cost and 
the time cost for the maintenance of consistent 
materialized views, as updates occur in the base table. 
In Cassandra, when the user updates the base table, 
the materialized views will be updated automatically, 
generating a lower maintenance cost at the user level.

3. Related work
This section summarizes and compares papers 

presented as shown in Table 1. In order to fill the 
data modeling gap for NOSQL databases, some 
works chose to focus on a specific performance 
demanding application: the OLAP application 
[7] which has a heavy use of queries to retrieve 

large volumes of data. Typically, it is based on the 
multidimensional model, which includes the fact 
and the dimension concepts. These concepts are 
represented in the relational model as a star schema, 
where the fact corresponds to a table as well as each 
dimension. Each fact tuple refers to tuples in each 
dimension.

The transformation of the multi-dimensional 
conceptual model directly to the NOSQL logical 
model is proposed by Chevalier et al [8]: each star 
schema is mapped into a single table. The fact is 
transformed into a column family, in which every 
measure is a column. Each dimension is transformed 
into a column family, in which every attribute is a 
column. In addition, all aggregation possibilities 
for that schema are also similarly mapped into a 
separate table, as materialized views. However, in 
this work, there is no intention in selecting a subset 
of those materialized views, which implies high 
costs concerning storage and materialized view 
maintenance.

A complementary study over NOSQL 
Multidimensional Modeling [9] presents three 
different ways of logical modeling in a NOSQL 
columnar database. The first one, named 
normalized logical approach (NLA), adopts a vertical 
fragmentation of a denormalized star schema and 
stores the fact and each dimension into different 
tables. The denormalized logical approach (DLA) 
maps the star schema into a single table, which 
stores the fact and dimensions all together. The 
third one, called denormalized logical approach 
using column families (DLA-CF), is similar to the 
DLA approach, but the dimensions and the fact are 
mapped, each one, to a different column family.

Another study [10] proposes a Cassandra 
data modeling based on the queries. It also 
defines modeling principles, mapping rules, and 
mapping patterns. This methodology prioritizes 
the applications workflow and its access patterns. 
The normalization is removed, implying data 
redundancy and materialized views usage over 
joins. Because of those differences, it is necessary 
a paradigm shift from modeling based purely on 
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entities and relationships to modeling based on 
queries.

On Scabora et al [4], three modelings are 
used over HBase to evaluate the performance of 
OLAP Queries. In addition to the DLA e DLA-CF 
modelings presented on Dehdouh et al [9], which 
are denominated SameCF e CNSSB respectively, the 
authors propose the FactDate modeling as the third 
alternative. It follows the same idea of the DLA-
CF alternative, but it gathers the fact and the date 
dimension  in the same column family. Experiments 
with those three modeling alternatives showed that 
the FactDate alternative has better performance 
on queries that use few dimensions, i.e., the Date 
dimension and one other. On the other hand, the 
SameCF alternative has better performance on 
queries that use a higher number of dimensions.

These related works were reported on modeling 
performance of column-oriented databases, but 
they do not approach how to deal with the data 
distribution nor how to select materialized views 
to get the best performance of the database. This 
is a crucial factor to execute queries properly over 
Cassandra. In this work, we present a set of guidelines 
and a heuristic to help the modeler on selecting the 
best distribution keys (partition and clustering keys) 
and a set of materialized views for the Cassandra 
database system.

4. Initial experiments
As previously mentioned [8], in order to perform 

data modeling, it is a good practice to start with a 
conceptual schema of the data and then proceed to 
the data modeling, where the conceptual schema 
elements are mapped into a logical/physical schema 
of a specific DBMS.

Once a logical schema is designed, it is important 
to know the typical/critical queries that should 
be supported by the application. From these, it is 
possible to define logical/physical schema alternatives 
(candidate schemas) to the database. In the case of a 
column-oriented DBMS, the choice of such schema 
is not trivial. A careful analysis is necessary to 

identify the most appropriate logical/physical schema 
according to the application demand.

In short, data modeling consists of two steps. The 
first step is concerned with conceiving the first version 
of a logical schema. Then, the second one focuses on 
performance issues and on attending to application 
demands, such as addressing a set of critical queries. 
In this work, we address just the second step for the 
Cassandra DBMS. We assume that an initial logical 
schema is already available, and then we apply a set of 
heuristics in the form of an algorithm.

Tab. 1 – related work comparison.
Work Modeling Materialized Views DBMS

Chevalier et 
al [8]

Conceptual/
Logical - MongoDB 

and HBase
Dehdouh  et 

al [9]
Conceptual/

Logical - HBase

Chebotko  et 
al [10] Logical - Cassandra

Scabora et 
al [4] Logical Materialized Views with an

external application HBase

In order to develop such an algorithm, we 
performed some initial experiments for a typical 
OLAP application, which are detailed in this Section. 
To guarantee that we would start with the best initial 
logical schema, we explored the CNSSB datasets 
[11] and queries, considering three logical schemas, 
as proposed in [9] and [4]: SameCF, DLA-CF, and 
FactDate. Based on the results of such experiments 
detailed in Section 4.2, we found out that the best 
initial logical schema was the SameCF schema.

Then, assuming the SameCF schema as the initial 
schema, we observed the performance gains while 
using partition and clustering keys alternatives and 
while querying on materialized views. This discussion is 
presented in Section 4.2. Then, in Section 5, we identify 
some heuristics for choosing those keys and materialized 
views to address most of the queries and reduce the 
set of materialized views. Finally, these heuristics were 
formalized in the algorithm presented in Section 5.

4.1 Initial logical schema definition

All three models (SameCF, DLA-CR, and 
FactDate)2 were populated with data generated from 
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the DBGen application of the CNSSB3 [11]. After 
populating the models, the thirteen CNSSB queries, 
organized in 4 typical sets, Q1, Q2, Q3, and Q4 [11], 
were executed five times on each model to measure 
their performance average. Experimentally, it was 
noticed that there was not a large variation within a 
few executions. Thus, five executions seemed to be 
sufficient to characterize the performance.

As it can be seen in the graph of  figure 1, the queries 
had similar behavior in the DLA-CF and FactDate 
models, except for the Q1 set of queries that benefits 
from the fact it does not require joins to perform 
the queries. The SameCF model can obtain better 
performance in sets Q2, Q3, and Q4, showing that the 
use of joins in Cassandra implies a worse performance 
of the query. Analyzing the query behavior, we can 
note the influence of the Partition Key and Clustering 
Keys. Cassandra not only partitions the data and 
distributes them among the nodes according to the 
Partition Key but also orders the data in the partition 
according to the Clustering Key. Queries that use 
Partition Key attributes as filters usually perform 
better. However, those queries performance may be 
reduced if they also use other attributes as filters. 
Therefore, query performance is highly dependent 
on the attributes used and on the fact that they are 
part of the Partition or Clustering Keys.

Since the SameCF model had an average superior 
performance to the DLA-CF andFactDate, this model 
was chosen as the initial logical model. From this 
model, an evaluation of the use of materialized views 
is presented in the following section. Then, a heuristic 
is defined based on the use of materialized views 
according to the SameCF model.

4.2 Experiments results

Analyzing the SameCF model, we can see that the 
way the attributes are arranged in the PrimaryKey 
directly influences queries performance. A query that 
filters on an attribute that belongs to the Partition 

Key will perform well as opposed to a query that 
filters on an attribute that is positioned at the end 
of the Clustering Key [6]. The Clustering Key sorts 
the records of a partition according to each attribute 
defined in it, that is, it is an ordered list of attributes 
that determines the order of the records in the disk. 
From the graph of figure 2, in the set of queries QG1, 
there was a significant variation in the performance 
of the queries. Queries 1.1 and 1.3 performed well 
because their filter attributes were those used for 
the formation of the Partition Key (year) and the 
Clustering Key (discount, quantity), in this case, the 
first attributes. On the other hand, query 1.2 had the 
worst performance for two reasons: first, since it does 
not include the Partition Key attribute as a filter, and 
second, because the attribute yearmonthnum is an 
attribute unfavorably positioned in the Clustering Key, 
that is, it is not an attribute that is positioned right at 
the beginning of the Clustering Key, impairing filter 
performance. 

Regarding the QG2 set, queries showed the best 
average performance, with times very close to each 
other. On the other hand, the QG3 was the worst 
set. Interestingly, query 3.1 had one of the best 
performances concerning all queries of all sets. This is 
explained by the fact that the attributes of the filters in 
this query are either an attribute of the Partition Key 
(year) or belong to the first positions of the Clustering 
Key (supregion, region). Although queries 3.2 and 
3.3 used a filter based on the Partition Key attribute 
(year), the other attributes used as filters belong to 
unfavorable positions in the Clustering Key, which 
explains their bad performances. Query 3.4 does not 
use the Partition Key (year) attribute as a filter but 
as an ordering/grouping attribute and, in addition, it 
also filters data by unfavorably positioned Clustering 
Key attributes.

Finally, when analyzing the QG4 set, we note that 
queries 4.1 and 4.2 had a good performance. This is 
probably due to the fact that those queries filter using 
the first attribute of the Clustering Key. The use of 

2https://db-engines.com/en/ranking
3https://github.com/thiagobleao/cnssb_dataset
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the Partition Key (year) in query 4.2 may have led it to 
perform better. Query 4.3 had the worst performance 
because it used only unfavorable positioned attributes 
of the Clustering Key. However, interestingly, it uses 
the Partition Key (year) as filter, which shows that only 
using the Partition Key will not necessarily ensure the 
best performance for a query.

Fig. 1 – Query performance on each model

Fig. 2 – Queries performance in SameCF model

Fig. 3 – Materialized view performance

To improve the performance of the queries, it is 
possible to create materialized views from a table in 
Cassandra. This allows the choice of attributes that will 
be part of each materialized view and the reorganization 

of the Partition and Clustering Keys for that materialized 
view. Using the criterion proposed by Baralis et al [12], 
we chose the worst performance set of queries (Q3) as the 
basis for the creation of the materialized view. The graph 
of figure 3 shows the performance of these queries on the 
materialized view and compares them to the base table. 
When performing the four queries of group Q3 on the 
created materialized view, we can observe that query 3.1 
loses performance. This is explained using the modified 
Clustering Key. In addition, this is also the reason for 
the reduction of the execution time of the other queries. 
That is, query 3.1 can continue to be executed directly 
on the base table and the other queries would do better if 
executed on the materialized view.

We can conclude that using joins through applications 
is not ideal since there is a loss of performance. That said, 
the ideal for modeling in Cassandra is to denormalize the 
data and store them in a single table.

5. Guidelines for cassandra
Usually, at the logical modeling phase of a database 

design, the idea is to depart from a conceptual DBMS 
independent view of the application and arrive at a 
DBMS dependent schema of it. In the context of a 
relational database, it consists of designing a set of tables 
and attributes, whereas, in the context of a columnar 
database approach, this means choosing which column 
families should be created. Assuming an initial columnar 
logical schema is already chosen, the next phase of a 
database design is the physical schema design, which 
focuses on the performance of the database for a given set 
of applications, queries, and activities. In the Cassandra 
case, this includes defining materialized views.

Based on the results of the initial experiments, 
reported in subsection 4.2, it was possible to devise 
some initial guidelines, concerning the choice of a 
logical/physical schema for Cassandra DBMS.

Guideline 1. Denormalize the logical schema. 
Considering an initial conceptual-logical mapping 

as the logical initial schema, it is recommended to 
denormalize this schema, in such a way that it is able 
to answer a set of critical queries or demands.
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Guideline 2. Define the primary key attributes. 
Based on the set of critical queries, analyze the most 

frequently used attributes on the query constraints 
and then choose the ones to form the primary key.

Guideline 3. Define a set of materialized views.
The idea is to group queries, according to their 

common attributes, i.e., attributes that are present in 
selecting and filtering clauses. These groups are the 
basis for the choice of the materialized views. Once 
defined, these materialized views may be created. 

Guideline 4. Define a query redirection policy. 
Given a set of materialized views, a query redirection 

mechanism could benefit from those materialized 
views, by rewriting and redirecting the query to the 
materialized view that can probably provide the best 
performance for that query.

In order to help the designer with guidelines 2 and 
3, in this section we present Algorithm 1. It is based 
on Cassandra query execution constraints, previously 
presented in Section 2. It takes as input an initial 
denormalized logical schema, as suggested by guideline 
1, and a set of pre-defined critical/typical queries, and 
its output may be used as the input for guideline 4.

Cassandra supports query execution only directly 
into a partition, that is, it demands an equality constraint 
over the partition key. This is the first premise adopted 
to suggest a materialized view. Another premise based on 
Cassandra’s limitations is the use of inequality constraints, 
which can only appear once in each query. In the case of 
constraints with the IN clause, it may appear along with 
another inequality constraint, and this must be the last 
one to be applied in the query expression, and only in the 
Clustering Key.

Therefore, based on these initial premises, Algorithm 
1 finds possible combinations of attributes to form the 
primary key for each materialized view. The main idea 
is to identify groups of queries, of which constraints use 
attributes in common, and for each group, the algorithm 
suggests a reduced number of materialized views, with 
their respective primary keys. In addition, for each 
materialized view, it suggests the set of queries that are 
associated with it, i.e., it indicates to which materialized 
view each query should be redirected to (or rewritten to).

The following variables are used in Algorithm 1 

(figure 4):
• Q: set of critical/typical queries to be executed on 

Cassandra; 
• v: index of the materialized view under construction, 1 

≤ v ≤ |Q|;
• AEx: set of equality attributes, i.e., attributes that are 

involved in equality-based constraints on a query qx 
expression, which will compose the set of attributes 
AEv of the primary key of the associated materialized 
materialized view v; 

• AEv: set of equality-based attributes of materialized 
view v;

• ANEx: set of non-equality attributes, i.e., attributes 
that are involved in inequality-based constraints on 
a query qx expression, which will compose the set 
of attributes ANEv primary key of the associated 
materialized view v; 

• ANEv: set of inequality-based attributes of materialized 
view v; 

• Ax: set of attributes of query qx, where Ax = AEx ∪ 
ANEx; 

• Av: set of attributes that will compose the primary key 
of the associated materialized view, where Av = AEv ∪ 
ANEv; 

• Qv: set of queries that will be addressed by the 
materialized view v; 

• V : set of materialized views to be generated, formed by 
a set of pairs (Av,Qv); 
Q´ : set of queries that are not supported by none of 

the existing materialized view in V ;
In step I, Q´ is initialized with the complete set of 

queries, then the algorithm iterates over the Q´ set until 
it becomes empty. Each iteration on Q´ (step I) aims at 
building a new materialized view v and its corresponding 
primary key. Every query qx from Q´ is analyzed by 
the algorithm concerning its attributes involved in 
equality and inequality constraints until the key for 
the materialized view under construction is formed. 
Depending on the evolution of the key under construction 
for the materialized view of the moment (v), query qx 
may be treated in steps II, III, and IV. If it satisfies the 
constraints for one of these steps, it is included in the set 
of queries (Qv) that will be addressed by materialized view 
v and removed from the Q´ set.
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The first query of each iteration on Q´ is always treated 
within step II, where the sets of equality/inequality-based 
attributes are initialized for the materialized view of the 
moment. Once the first attributes for a materialized view 
are defined, then the next Q´ queries are treated by the 
following steps, depending on if they have attributes in 
common with the materialized view under construction. 
Step III will add queries that bring to the materialized 
view one attribute involved in an inequality constraint at 
the most, and those queries have attributes in common 
with the set of attributes of the materialized view (Av ⊆ Ax 
or Ax ⊆ Av). Step IV deals with queries that bring to the 
materialized view more than one attribute involved in an 
inequality constraint. In this case, the query under analysis 
needs to have the same equality constraint attributes. 
Queries that did not fit within any of the previous steps 
remain in Q ,́ and they will be analyzed again for a new 
iteration, i.e., for the creation of a new materialized view.

Fig. 4 – Algorithm 1

Finally, at the end of each while iteration, in step 
(V), the set of attributes that compose the materialized 
view Av is created and the set of materialized views V 
is incremented with the new pair (materialized view 
(Av), query (Qv)).

6. Experiments with materialized views 
in cassandra

In this section, we present experiments’ results 
to evaluate the heuristics proposed in the previous 
section. The purpose of these experiments is to 
compare the performance of three logical models 
with different input rates of reading and writing 
operations, one of which uses the proposed heuristics.

The experiments were carried out in a 
computational cluster with four nodes, each with 158 
GB of RAM, 64 CPUs of 2.4 GHz. The operating 
system of each node is CentOS, with the DBMS 
Cassandra (version 3.0). The dataset used during 
the experiments was generated by the dbgen of the 
CNSSB [11] without any post-treatment since it is 
already generated on a single denormalized table in 
a CSV file.

6.1 Heuristic application

Using the CNSSB schema with its thirteen 
queries4, the proposed heuristic created a set of nine 
materialized views. Each materialized view has a 
different primary key that will allow the execution 
of one or more queries. None of these queries could 
be performed by more than one materialized view. 
Therefore, a minimum number of materialized views 
was generated to meet all the specified queries.

Next, it is exemplified the generation of a 
materialized view formed by the following two queries:
1. select year, nation, revenue, supplycost from 

cnssb.nlineorder where region = ’AMERICA’ 
and suppregion = ’AMERICA’ and mfgr in 
(’MFGR#1’,’MFGR#2’)

2. select year, nation, revenue, supplycost from cnssb.
nlineorder where region = ’AMERICA’ and 

4 https://github.com/thiagobleao/rmct_appendix/blob/main/rmct_apendix.pdf



78 • RMCT

 VOL.38 Nº4 2021

suppregion = ’AMERICA’ and year in (1997,1998) 
and mfgr in (’MFGR#1’,’MFGR#2’)
Both queries have three attributes in common in 

equality filters: region, suppregion, and mfgr. These 
attributes will initially compose the primary key, one 
of them as the partition key, and the other attributes 
will begin the clustering key. The query (2) also has an 
equality filter over the year attribute. This attribute 
must also be included in the clustering key since it 
is not used by the query (1). The composition of the 
primary key of the materialized view that fits the two 
queries is:
• Partition Key: region 
• Clustering Key: suppregion, mfgr, year

The next example is based on a group of queries 
that use equality and inequality filters:
1. select discount,quantity from cnssb.nlineorder 

where year = 1993 and quantity < 25 and discount 
between 1 and 3

2.  select extendedprice,discount as revenue from 
cnssb.nlineorder where year = 1994 and 
yearmonth = ’Jan1994’ and quantity between 26 
and 35 and discount between 4 and 6 

3. select extendedprice, discount as revenue from 
cnssb.nlineorder where year = 1994 and 
weeknuminyear = 6 and quantity between 26 and 
35 and discount between 5 and 7
If executed as presented, these queries will not run 

in Cassandra since this DBMS restricts comparisons 
of “greater than” and “less than” types only to the last 
field of the key to be filtered. Because of this, these 
three queries were adapted by changing the “quantity 
<” to “quantity in”. According to Cassandra’s 
constraints, the filter on the discount attribute could 
be made using “greater than” or“less than” since 
it is the last attribute of the clustering key of the 
materialized view. But in order not to assume that 
this will necessarily be done by the heuristic, it was 
decided to adapt this filter also to use the“in” clause. 
After these adaptations, the queries became as follows:
1. select discount,quantity from cnssb.nlineorder 

where year = 1993 and yearmonth in (’Jan1993’, 
’Feb1993’, ’Mar1993’, ’Apr1993’, ’May1993’, 
’Jun1993’, ’Jul1993’, ’Aug1993’, ’Sep1993’, 

’Oct1993’, ’Nov1993’, ’Dec1993’) and quantity in 
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 
17, 18, 19, 20, 21, 22, 23, 24) and discount in(1, 2, 3) 

2.  select extendedprice,discount as revenue from 
cnssb.nlineorder where year = 1994 and 
yearmonth = ’Jan1994’ and quantity in (26, 27, 
28, 29, 30, 31, 32, 33, 34, 35) and discount in (4, 
5, 6) 

3.  select extendedprice, discount as revenue from 
cnssb.nlineorder where year = 1994 and 
weeknuminyear = 6 and quantity in (26, 27, 28, 
29, 30, 31, 32, 33, 34, 35) and discount in (5,6,7)

Regarding the application of the heuristic on 
these three queries, another adaptation was made in 
the query (1) so that it could be served by the same 
materialized view of the query (2). Originally, query 
(1) does not have the filter on the attribute yearmonth. 
However, it could be included in query (1) to achieve 
the same result and to add a few restrictions to query 
(1). The same cannot be done to query (3) on the 
weeknuminyear filter. While the yearmonth filter 
represents the months of one year (maximum of twelve 
restrictions), the weeknuminyear filter represents the 
number of the week of a year (approximately fifty-two 
restrictions). The last filter has a very high number 
of restrictions, escaping much from a scenario closer 
to a real-world application. In this way, the heuristic 
generated two materialized views, one to answer 
queries (1) and (2) and another to answer the query 
(3).

The queries (1) and (2), after the  aforementioned 
adaptations, have equality filters over the following 
attributes: year and yearmonth. These attributes will 
compose the primary key of the materialized view, 
with one being the partition key and the other being 
the clustering key. These queries also have two non-
equality filters: quantity and discount. Both attributes 
will be included in the clustering key, right after 
the equality attribute that was included in it. The 
composition of the primary key of the vision that will 
support these queries is:
• Partition Key: year 
• Clustering Key: yearmonth, quantity, discount

Query (3) should correspond to a materialized 
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view that will only attend to that query. The key 
of this materialized view will be composed of the 
attributes “year” and “weeknuminyear”. One of them 
will be chosen for the partition key. The other one 
will be the first attribute in the clustering key of that 
view, and it will be followed by the attributes quantity 
and discount (involved in inequality conditions). The 
composition of the primary key of the view that will 
support this query is:
• Partition Key: year 
• Clustering Key: weeknuminyear, quantity, discount

Like the examples cited above, nine materialized 
views were created from the application of the 
proposed heuristic on all of the thirteen queries, 
as shown in table 2. After the implementation of 
the three models in Cassandra, the five workloads 
were executed in each modeling mode to evaluate 
the proposed heuristic and verify its performance 
compared with the other models.

6.2 Evaluation scenarios

To evaluate the performance of the use of the 
heuristic in Cassandra, three different scenarios 
were used. For each scenario, a keyspace was created 
with a replication equal to 2, that is, each record was 
replicated twice in the cluster.
1.Scenario 1: Heuristic generated model, with a 

minimum of materialized views that can handle 
all the queries. 

2. Scenario 2: Modeling with a materialized view for 
each query. 

3. Scenario 3: Modeling with a table for each query.
Five workloads were developed to evaluate different 

aspects of each scenario. Each workload represents 
a combination of reading and writing operations. 
The objective is to analyze the performance of the 
evaluated models considering different possibilities of 
operations that are made over a database. 

All workloads are based on the same dataset 
(CNSSB) to ensure that they are executed under the 
same conditions. In this way, it is expected to identify 
which scenario provides the best performance for 
each workload.

The following workloads were used:
• Only read operations.
• Most read operations: 75% read and 25% write 

operations. 
• Read and write operations equal: 50% read and 

50% write operations. 
• Most write operations: 25% read and 75% write 

operations. —Only write operations.
These workloads were developed using the CNSSB 

dataset file as a basis for writing operations and 
CNSSB queries of reading operations. The execution 
of each workload was performed through a program 
written in the Python language that performs all 
operations in parallel.

6.3 Performance analysis

Initially, the performance of the three scenarios is 
verified in a workload with reading operations only. 
The execution performance of the three scenarios is 
very close and took around 10 minutes. Considering 
that each scenario is modeled to attend all the proposed 
queries and Cassandra itself ensures that a query will 
be executed only if it has a good performance, model 
variations do not affect the execution performance of 
the queries. However, read operations concurs with 
the update and insert operations and, in this case, 
there is a usual performance loss.

Tab 2: materialized views created from the heuristic

View Partition Key Clustering Key Supported 
Queries

V1 suppregion region,mfgr,year 4.1, 4.2
V2 suppcity city,year,yearmonth 3.3, 3.4
V3 suppregion brand1 2.2, 2.3
V4 year yearmonth,quantity,discount 1.1, 1.2
V5 year weeknuminyear,quantity,discount 1.3
V6 suppregion category 2.1
V7 suppregion region,year 3.1
V8 year suppnation,region,category 4.3
V9 suppnation nation,year 3.2

Considering the workloads that include writing 
operations, there are two different situations: write 
operations that result from existing records (updates) 
and write operations that are inserts of new registries 
(inserts). Due to the fact that Cassandra does not 
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read the existing values when running an update 
[6] when the number of updates is greater than the 
number of inserts, the table-based modeling tends 
to offer better performance, even when it runs more 
operations. However, the use of materialized views 
makes Cassandra lose this feature [13], leading to a 
worse performance. Due to these differences, two 
comparisons were made with write operations in 
workloads,  one performing only updates and another 
only inserting new records.

Figure 5 shows the results of the execution of the 
workloads with inserts. This graph uses a logarithmic 
scale, but the absolute values of the runtime in minutes 
are highlighted in each bar. From these results, it was 
observed that scenario 3 (table-based modeling) is 
clearly the most affected by the increase of writing 
operations. This scenario has a table for each query 
and these tables are completely independent of each 
other. Therefore, each writing to be done in the 
database must be done thirteen times in order to 
update all tables. This fact explains the significant 
increase of the execution time in this scenario, as the 
number of write operations increases.

Still considering figure 5, it was verified that 
scenario 1 (modeling generated by the heuristic) 
performs better than scenario 2 (modeling with a 
materialized view per query). This improvement 
in performance ranges from 13% to 35%, and it is 
justified by the fact that in scenario 2 there is a greater 
number of materialized views. This does not imply the 
execution of a greater number of write operations, as it 
occurs in scenario 3. The replication of the updates is 
done automatically by Cassandra internally. Although 
this replication is much more efficient than writing 
separately in each table, it has a running cost. As 
scenario 2 has more materialized views than scenario 
1, this cost ends up directly affecting the performance 
in scenario 2.

Figure 6 shows the results of the executions of 
the workloads with updates. This graph also uses 
a logarithmic scale, and the values of the runtime 
in minutes are highlighted in each bar. In the case 
of existing records updates, there is a change of 
behavior considering the operations of new records 

insertions. It was observed that scenario 3 performed 
better compared to other scenarios. This is because 
Cassandra implements updates on materialized views 
as follows: it performs reading the data already present 
in the materialized views, updates it, removes the old 
record and inserts the new one. While without the use 
of materialized views, Cassandra simply inserts the 
record with a most recent timestamp, and this is the 
record that will be returned to the queries.

Fig. 5 – Graph of workloads with new registries insert operations

Fig. 6 – Graph of workloads with existing registries update operations

Comparing scenarios 1 and 2, it can be observed 
in figure 6 that scenario 1 presents a better 
performance in all situations, ranging from 14% to 
31%, performance similar to the use of inserts. In 
addition, there is an increase in performance gain as 
the number of updates increases. 

Although scenario 3 performs better than 
scenarios 1 and 2, the use of the table-based 
modeling leads to a higher cost of maintaining the 
data since a change in one table should be reflected 
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in all other tables created, losing Cassandra’s 
feature of syncing materialized views. 

We can observe that a factor that influences the 
number of materialized views suggested by the 
heuristic is the variety of attributes in the query filters. 
The smaller the variety of these attributes, the smaller 
the number of materialized views generated by the 
heuristic, ensuring a more significant performance of 
scenario 1 compared to scenario 2, especially when 
there are a lot of write operations.

7. Conclusion
This work presents a set of guidelines to support 

the logical/physical design of database schemas for 
Cassandra DBMS. It includes a heuristic for data 
modeling based on specific queries to define a set of 
materialized views and their corresponding primary 
keys. 

The CNSSB benchmark dataset and its queries 
were used to evaluate the proposed heuristic. The 
experiments used workloads varying the rate of read/
write operations. The results showed that the more 
insert operations the better was the performance 
of the heuristic. On the other hand, when most of 
the operations are updated, the use of a table for 
each query performs better. However, it is worth 

saying that the reduced number of materialized 
views (heuristic scenario) is still a better choice if 
compared to the use of all possible materialized views. 
Therefore, the proposed guidelines bring light to the 
data modeling for Cassandra DBMS. Moreover, in the 
case of analytical applications, where write operations 
are usually a large set of inserts, the heuristic is 
particularly useful. 

For future work, we plan to apply the heuristic with 
different datasets, sets of queries, and applications like 
OLTP. Also, we intend to investigate the application 
of the heuristic with adjustments, over different 
NOSQL DBMS that behave similarly to Cassandra. 
Additionally, we intend to evaluate the impact of 
Cassandra replication factor and how its variation 
may affect query performance and memory usage.
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