
92

RESUMO: Desde o início da utilização da radiofrequência no Brasil, a comunicação via rádio
continua sendo um dos principais meios de comunicações empregados pela Força Terrestre em
campanha. Neste artigo foi apresentado uma atividade pioneira desenvolvida por militares do
Curso Avançado de Eletrônica do ano de 2022: a conversão de informação em claro em código
morse, utilizando como base o microcontrolador Arduino e o Rádio Harris MPR­9600­MP.

Palavras Chaves: ARDUINO, CÓDIGO MORSE, COMUNICAÇÕES, RADIOFREQUÊNCIA,
RÁDIO HARRIS.

APLICAÇÃO DE ARDUINO NO EXÉRCITO BRASILEIRO:
 EMPREGO DO ARDUINO PARA OPERACIONALIDADE DAS COMUNICAÇÕES

GEOVANI DE MORAES TOMAZ, GLEISON LIMA DE SOUZA, JOSE DALVAN DE MOURA SANTOS, MATHEUS

CAON STOCHERO, PEDRO VILARIN DE LIMA , MARCOS VINICIUS HOLANDA MARTINS, MATHEUS TAVARES

RODRIGUES GUARANY DA SILVA, RAFAEL PORTELLA DA SILVA, RAPHAEL DA SILVA GUIMARÃES E

WELLINGTON DE SOUSA SILVA

1 INTRODUÇÃO

A comunicação no Exército Brasileiro é
de suma importância para o seu emprego em
diversos terrenos diante da extensão
territorial do país. Sendo assim, em algumas
ocasiões, a comunicação através do rádio
torna­se muito complexa, tendo em vista a
dificuldade de acesso ao teatro operacional.

Neste cenário, a fim de se ter uma
comunicação com o melhor alcance e com
um custo mínimo de bateria, vislumbrou­se a
possibilidade de se utilizar o equipamento
Rádio Harris MPR 9600 na modulação
Continuos Wave (CW).

Sabendo­se que a linguagem em
Código Morse é complexa, de difícil
aprendizado e que existem poucos militares
especializados atuando nesta área de
comunicação no Exército Brasileiro e com
base no tema proposto no artigo científico,
surgiu a possibilidade de se utilizar o
Microcontrolador Arduíno acoplado ao
equipamento rádio, a fim de permitir a troca
de mensagens em Código Morse sem que o
operador detenha qualquer conhecimento de
telegrafia. Para tanto, foi acoplado ao
Microcontrolador Arduíno um display LCD
20x4 e um mini teclado matricial 4x11 que
permitem ao operador ler e escrever
mensagens que serão enviadas em Código

Morse.
Com isso, permitiu­se que o Arduíno

automatizasse o processo de codificação e
decodificação das mensagens recebidas e
enviadas.

2. METODOLOGIA

Para o embasamento teórico foram
realizadas diversas pesquisas sobre os temas:
estrutura do código morse, modulação CW,
transmissão morse via Arduino e o Manual de
operação do equipamento rádio Harris MPR­
9600MP.

Foram utilizadas diversas bibliografias
encontradas sobre o Código Morse e
Programação C++ na internet e algumas foram
adaptadas ao código do Arduino para a
resolução da situação problema.
Posteriormente, foram realizados os cálculos
do filtro RC, utilizado no circuito de detecção de
tom e filtragem das harmônicas.

2.1 INTEGRAÇÃO ARDUINO­RÁDIO

Para desenvolver uma solução de
comunicação emergencial que possibilite a
transmissão em CW, utilizando o
microcontrolador Arduino e o Equipamento
Rádio Harris MPR­9600MP, é necessário saber
a lógica da comunicação via código morse e

93

como funciona a modulação CW.
Embora o código morse possa ser transmitido
em qualquer velocidade, o tempo relativo entre
os vários elementos é fixo. De um modo geral, o
código morse consiste em cinco elementos:
a) um ponto (uma unidade);
b) um traço (três unidades);
c) uma lacuna entre elementos (uma unidade);
d) uma lacuna entre letras (três unidades);
e) lacuna entre palavras (7 unidades).

FIGURA 01 ­ Elementos do Código Morse

Fonte: Crypto Museum, 2016.

No código binário a seguir, o texto “VIR
FORTIS” foi usado como exemplo para
demonstrar que também é possível representar
o código morse por um fluxo constante de bits
digitais (uns e zeros). Se definirmos um tom
como '1' e um silêncio como '0', o exemplo
produziria o seguinte fluxo, conforme TABELA
01 a seguir:

TABELA 01 ­ Representação da Mensagem
Código Morse

Fonte: os autores, 2022.

2.1.1 NA TRANSMISSÃO

Para que seja possível transmitir em
“Continuous Wave” (CW) o equipamento rádio
deve estar na modulação CW e o botão “Push to
Talk” (PTT) deve ser apertado para produzir os
pulsos de diferentes comprimentos (pontos e
traços) que formarão as mensagens de texto em
código Morse.

Para automatizar esse processo de
codificação foi confeccionando um cabo para
integrar o microcontrolador com o equipamento
rádio e fazer com que o Arduino defina

corretamente os momentos de fechar os
contatos entre os pinos A (terra) e C (PTT) do
cabo que vem do rádio.

2.1.2 NA RECEPÇÃO

Já na recepção, para que o Arduino
decodifique o sinal vindo pelos pinos A (terra) e
B (fone) do cabo que vem do equipamento
rádio, é necessário que o sistema consiga
interpretar quando o sinal está em nível lógico
alto ou nível lógico baixo e a partir daí registrar
o tempo que leva em cada estado, para dessa
forma conseguir decodificar a mensagem e
mostrá­la num display.

2.1.3 DISPOSITIVO DE ENTRADA

Como dispositivo de entrada foi utilizado
um teclado adaptado e ligado ao Arduino, por
meio de cabos flexíveis, que serve para a
devida inserção das mensagens que serão
codificadas para linguagem em Código Morse
pelo microcontrolador.

2.1.4 DISPOSITIVO DE SAÍDA

Como dispositivo de saída foi utilizado
um Display LCD 20x4 ligado ao Arduino, via
I2C, que serviu para exibir as mensagens
recebidas e transmitidas que foram codificadas
e decodificadas para linguagem em Código
Morse pelo microcontrolador.

3. RESULTADOS E DISCUSSÃO

3.1 INTEGRAÇÃO ARDUINO­RÁDIO

A utilização do Arduino como protótipo,
que posteriormente se tornou uma placa com
os circuitos testados em funcionamento,
permitiram que a automaticidade da
interpretação da informação na rede rádio
ocorresse com sucesso após testes de caixa
preta, isto é, teste de funcionalidade, que
buscaram garantir que os requisitos funcionais
do produto estivessem consistentes.

O projeto da placa para o circuito
microcontrolador foi construída com vários
componentes, citados na Tabela no Apendice A
– Tabela de Custos, deste documento. As

94

figuras abaixo mostram a Placa PCB projetada
para este trabalho com base nos requisitos
levantados.

FIGURA 02 – Placa de Circuito Impresso Digital

Fonte: os autores, 2022.

FIGURA 03 ­ Placa de Circuito Impresso com
Componentes

Fonte: os autores, 2022.

O programa usado para projetar o circuito
microntrolador idealizado foi o EasyEDA, uma
plataforma gratuita, totalmente online e baseado
em nuvem.

3.1.1 NA TRANSMISSÃO

FIGURA 04 – Esquema da Transmissão

Fonte: os autores, 2022.

Na transmissão temos um circuito
alimentado com uma tensão de +5VCC.

Através de uma programação C++
realizada no Arduino, cada vez que o Push­to­
Talk (PTT) é acionado, a corrente passa pelo
transistor NPN que funciona como uma chave
fechada aterrando o sinal e acendendo o LED.
Nessa fase, tendo em vista o Transceptor estar
na modulação CW, a portadora é enviada para
a fase de recepção do outro equipamento
rádio, com que está se realizando o enlace.
Vide figura 05 e figura 06.

FIGURA 05 – . Esquema do monofone

Fonte: Radionerds.com, 2014.

FIGURA 06 – Esquema da pinagem do
Monofone

Fonte: Radionerds.com, 2014.

3.1.2 NA RECEPÇÃO

O sistema ligado fica na escuta do pino
de entrada verificando se há presença de
algum sinal elétrico através do conector de
áudio do transceptor.

Quando a mensagem em Código Morse
chega, o status do pino de entrada muda de

95

baixo para alto, então entende­se que existe
tensão no pino de entrada do Arduino.
Quando isso ocorre, o sistema começa a
contagem do período em que esse sinal se
mantém, determinando dessa forma a
duração do pulso recebido.

O ponto (Dit) é identificado pelo
sistema quando o pulso dura entre 2/3 de um
Dit e 4/3 de um Dit. Se o valor de duração de
um Dit for entre 2 vezes o valor de um Dit e
4 vezes o valor de um Dit, o sistema fará a
interpretação do pulso como um traço (Dah).

O sistema interpretará a pausa com um
espaço quando o pulso elétrico no pino de
entrada for interrompido por tempo
equivalente a 3 vezes o Dit e esse silêncio
não tiver sido associado antes a um espaço.

Dessa forma, se a duração da pausa
for superior ao tempo de um ponto e o
sistema já tiver reconhecido algum pulso, o
sistema compreenderá que o código lido
equivale a um caractere, mapeando essa
sequência de Dit e Dah.

À medida que a interpretacao de cada
pulso elétrico vai ocorrendo e sendo
convertida em caracteres, ele vai
concatenando, chegando ao final com o texto
decodificado que é enviado para o display, a
fim de ser visualizado pelo usuário.

Um problema encontrado foi separar o
tom de 1000Hz da frequência da portadora.
Como se sabe o equipamento rádio HARRIS
MPR­9600 MP opera em CW com emissão
J2A e possui a configuração CW OFFSET, na
qual se tem duas opções, portadora
suprimida (CW) ou tom modulado (MCW).
Um extrato com as especificações do Manual
do Rádio MPR­9600 sobre CW OFFSET
estão no Apêndice D deste artigo.

Para o desenvolvimento deste projeto a
opção escolhida foi MCW, na qual, ao fechar
os contatos do PTT no rádio transmissor, o
rádio receptor em MCW obtêm um tom de
1kHz. Caso o rádio receptor esteja na opção
CW, no lugar do tom de 1kHz ele tem sua
portadora suprimida, ou seja, fica um “vazio”,
dessa forma seria mais difícil desenvolver o
projeto.

TABELA 02 – Funcionamento Configuração do
CW OFFSET

Fonte: os autores, 2022.

Na Tabela 02 só funciona 01 e 02, pois a
configuração é para detectar o sinal de 1 kHz.

Para acessar as configurações de CW
OFFSET deve ser pressionado a sequência
PGM>CONFIG>RADIO no menu.

FIGURA 07 – Demonstração Menus Config
Harris

Fonte: os autores, 2022.

ORD RÁDIO TX RÁDIO
RX

TOM NA
RX

01 CW* CW 1 KHZ

02 MCW** MCW 1 KHZ

03 MCW CW 0 HZ

04 CW MCW 3,3 KHZ

96

3.2 MAIOR ALCANCE E ECONOMIA DE
BATERIA DO EQUIPAMENTO RÁDIO

Após a realização de testes em dois
Equipamentos Rádios Harris HF MPR­9600­MP
transmitindo por meio da modulação em AME e
da modulação em Continuos Wave (CW),
verificou­se o seguinte resultado:

Na transmissão (TX) da mensagem, com o
rádio configurado na modulação AME, a
portadora é enviada com as bandas laterais
superior e inferior, na mesma faixa de
frequência, conforme se demonstra na onda do
analisador de espectro da Figura 08.

FIGURA 08 – Análise da Onda na Tx em AME

Fonte: os autores, 2022.

Torna­se nítido que a potência neste tipo
de transmissão é menos aproveitada, tendo em
vista que a portadora carrega todos os dados
para o outro equipamento rádio, Sendo assim,
exigi­se mais do transceptor quando do envio
das mensagens, e consequentemente o
consumo de energia armazenada no rádio
torna­se elevado, e o alcance da mesma é
menor.

Agora, quando a transmissão (TX) é feita
com o rádio configurado na modulação
Continuos Wave (CW), na mesma faixa de
frequência, ocorre o envio da portadora vazia,
isto é, sem as bandas laterais superior e inferior,

conforme se demonstra na onda do analisador
de espectro, Figura 09.

FIGURA 09 ­ Análise da Onda na TX em
Continuous Wave (CW)

Fonte: os autores,2022.

Com isso, temos a mesma potência
configurada, porém, mais bem aproveitada,
fazendo com que o alcance do rádio, neste
tipo de modulação, seja superior, uma vez que
ele carrega somente a portadora.

4. CONCLUSÃO

O presente trabalho estudou a aplicação
de microcontroladores para solucionar uma
problemática real dentro do Exército Brasileiro.
Podemos demonstrar que o Arduíno é capaz
de contornar uma situação complexa, onde
não havia estudos a respeito.

Nos esforços de nosso trabalho neste
curto espaço de tempo, podemos perceber
que o circuito deve ser bem montado e
estável, porque as ondas de rádio,
principalemtne HF, sofrem diferentes tipos de
interferência ao longo do dia, dificultando a
montagem do circuito ideal para o propósito.

O presente trabalho pretende ser um
alicerce para futuros estudos na área de
integração entre microcontroladores e os
equipamentos rádio utilizados pela força, pois
as experiencias limitaram­se à utilização do
rádio MPR­9600­MP, desconhecendo­se como
será a interação do microcontrolador sendo
implementado com outros modelos de
equipamentos rádios.

97

5. REFERÊNCIAS

AXTUDO. Recursos decodificador de dados
e aplicativos do decodificador de tom ic
lm567. Disponível em: <https://
www.axtudo.com/recursos­decodificador­de­
dados­e­aplicativos­do­decodificador­de­tom­
ic­lm567/> Acesso em: 19 de maio de 2022.

BANZI, M., CUARTIELLES, D., IGOE, T.,
MARTINO, G., MELLIS, D. Página Oficial do
Arduino, 2016. Disponível em:
<www.arduino.cc>. Acesso em: 24 de maio
de 2022.

BRAGA, Newton C. Fevereiro, 2013. CW
(Continuous Wave ou Onda Contínua).
Disponível em: <https://
www.newtoncbraga.com.br/index.php/
almanaque/977­cw­continuous­wave­ou­
onda­continua.html> Acesso em: 20 de maio
de 2022.

CIRIBELLI, Marilda Corrêa. Como elaborar
uma dissertação de Mestrado através da
pesquisa científica. Marilda Ciribelli Corrêa,
Rio de Janeiro: 7 Letras, 2003.

HALÁSZ, lwan Thomas. Hamlbook do
Radioamador. São Paulo: Editora da
Universidade de São Paulo, 1993

Harris Corporation. MPR­9600 ADVANCED
TACTICAL HF RADIO – Intermediate
Maintenance Manual. 2009.

Harris Corporation. MPR­9600 ADVANCED
TACTICAL HF RADIO – Operation Manual.
2007.

LAURINDO, F.J.B., ROTONDARO, R.G.
Unindo tecnologia da informação e gestão
por processos: introdução e objetivos. In:
Gestão Integrada de processos e da
tecnologia da informação. São Paulo: Atlas,
2006.

Manual C11­1. Manual de Emprego das
Comunicações do Exército Brasileiro, 2ª
Edição/1997.

Manual C24­6, Exploração em Radiotelegrafia
e Telegrafia, 2ª Edição/1979.

MAXIM INTEGRATED. DS18B20
Programmable Resolution 1­Wire Digital
Thermometer. Califórnia, Estados Unidos,
2015. Disponível em: <http://
datasheets.maximintegrated.com/en/ds/
DS18B20.pdf>. Acesso em: 11 de maio de
2022.

RODRIGUES, William Costa. Metodologia
Científica, 2007. Disponível em:<http://unisc.br/
portal/upload/com_arquivo/
metodologia_cientifica.pdf>. Acesso em: 10 de
maio de 2022.

SARMENTO. O que é modulação e que modos
são utilizados. Disponível em: <http://
www.sarment­o.eng.br/Modulacao.htm>.
Acesso em: 14 junho 2022.

STRINGFIXER. Onda Contínua. Disponível
em: <https://stringfixer.com/pt/
Continuous_wave> Acesso em: 13 de junho de
2022.

98

ORD DESCRIÇÃO QUANT. VALOR UN. VALOR TOTAL

1 Display Cristal Líquido LCD 20x4 – AZ/BR 1 R$ 45,90 R$ 45,90

2 Módulo Serial I2C para Display 1 R$ 8,90 R$ 8,90

3 Mini Teclado Wireless 1 R$ 35,00 R$ 35,00

4 Capacitor Eletrolítico 2,2µF x 50V 1 R$ 0,09 R$ 0,09

5 Capacitor Eletrolítico 100µF x 50V 1 R$ 0,79 R$ 0,79

6 Capacitor Eletrolítico 10µF x 50V 1 R$ 0,12 R$ 0,12

7 Capacitor Eletrolítico 1µF x 50V 2 R$ 0,14 R$ 0,28

8 Capacitor Poliester 100nF 2 R$ 0,59 R$ 1,18

9 Resistor 1kΩ ­ 1/4W 1 R$ 0,05 R$ 0,05

10 Resistor 300Ω ­ 1/4W 2 R$ 0,05 R$ 0,10

11 Resistor 10kΩ ­ 1/4W 1 R$ 0,05 R$ 0,05

12 Resistor 220Ω ­ 1/4W 11 R$ 0,05 R$ 0,55

13 Transistor PNP ­ BC558 1 R$ 0,18 R$ 0,18

14 Transistor NPN ­ BC548 1 R$ 0,16 R$ 0,16

15 LM7805 1 R$ 2,13 R$ 2,13

16 LM567 1 R$ 2,49 R$ 2,49

17 Arduino MEGA 2560 1 R$ 137,50 R$ 137,50

18 Sensor Laser Apontador 1 R$ 3,30 R$ 3,30

19 Fotocélula LDR 5mm 1 R$ 0,90 R$ 0,90

20 LED 2 R$ 0,14 R$ 0,28

21 Chave Gangorra mini 2T 1 R$ 0,69 R$ 0,69

22 Soquete 8 pinos 1 R$ 0,29 R$ 0,29

23 Conector Barra de Pinos 1 R$ 1,21 R$ 1,21

24 Conector MOLEX KK 2T 3 R$ 0,46 R$ 1,38

25 Conector MOLEX KK 3T 1 R$ 0,82 R$ 0,82

26 Conector Circular MIKE 5P 1 R$ 7,79 R$ 7,79

27 Conector USB Fêmea Tipo B 1 R$ 1,69 R$ 1,69

28 Conector Barra de Pinos Fêmea 1x8x11,2 180
graus

2 R$ 0,89 R$ 1,78

29 Conector Barra de Pinos Fêmea 1x3x11,2 180
graus

2 R$ 0,49 R$ 0,98

30 Placa Fenolite 10x20 1 R$ 7,95 R$ 7,95
31 Caixa Plástica Para Circuito 2 R$ 5,55 R$ 11,10

TOTAL R$ 275,63

APÊNDICE A – TABELA DE CUSTOS

99

APÊNDICE B – FIGURA DE DIAGRAMA CASOS DE USO

100

APÊNDICE C – FIGURA DA PARTE STRUCT CW DO CÓDIGO

APÊNDICE D – ESPECIFICAÇÕES MANUAL HARRIS CW OFFSET

101

APÊNDICE E – PLACA DE CIRCUITO IMPRESSO COLORIDA

102

APÊNDICE F – ESQUEMÁTICO DO CIRCUITO DE TRANSMISSÃO/RECEPÇÃO

APÊNDICE G ­ ESQUEMÁTICO DO MINI TECLADO WIRELESS

103

APÊNDICE H ­ CÓDIGO DA PROGRAMAÇÃO NO ARDUÍNO

/***
* IMPORTES, CONSTANTES E VARIAVEIS TECLADO/DISPLAY
***/
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,20,4);

#define n_caracteres 41

int x = 0;
int y = 0;

int lcd_col = 0;
int lcd_lin = 0;

String mensagem = "";

String mensagens[100]; // salva as mensagens inteiras (permanente)
String linhas[100]; // salva a mensagem dividida em linhas (temporario)
int posUltMsg = 0; // posição da ultima mensagem no arrya de mensagens
int posMsgTela = 0; // posicao da pensagem no array que esta sendo exibida na tela
int poslinha = 0;
int posLinhaExibida = 3;

String fimMsg = " FIM DA MENSAGEM !!!";

int imprimiu = 0;

/***
* DEFINIÇÕES DE CONSTANTES
***/
#define pino_saida 7 // Define o pino de saida do MSG em código Morse

#define n_caracteres 41 //Quantidade de caracteres codificados

/***
* DEFINIÇÕES DE VARIAVEIS
***/
const byte pino_entrada = A0;

const int tempo_do_ponto = 150; // Define o tempo do ponto

const byte pinoPWM = 3; // Pino com controle PWM
const byte pinoONOFF = 4; // Pino com controle liga/desliga

struct biblioteca_morse // Cria uma biblioteca para guardar os códigos dos caracteres em código
Morse
{

104

 char character;
 String codigo;
 int linha;
 int coluna;
};

biblioteca_morse matriz[n_caracteres] = {
 {'A', ".­", 3 , 1}, {'B', "­...", 4, 5}, {'C', "­.­.", 4, 3}, {'D', "­..", 3, 3},
 {'E', ".", 2 , 3}, {'F', "..­.", 3, 4}, {'G', "­­.", 3, 5}, {'H', "....", 3, 6},
 {'I', "..", 2, 8}, {'J', ".­­­", 3, 7}, {'K', "­.­", 3, 8}, {'L', ".­..", 3, 9},
 {'M', "­­", 4, 7}, {'N', "­.", 4, 6}, {'O', "­­­", 2, 9}, {'P', ".­­.", 2, 10},
 {'Q', "­­.­", 2, 1}, {'R', ".­.", 2, 4}, {'S', "...", 3, 2}, {'T', "­", 2, 5},
 {'U', "..­", 2, 7}, {'V', "...­", 4, 4}, {'W', ".­­", 2, 2}, {'X', "­..­", 4, 2},
 {'Y', "­.­­", 2, 6}, {'Z', "­­..", 4, 1}, {'0', "­­­­­", 1, 10}, {'1', ".­­­­", 1, 1},
 {'2', "..­­­", 1, 2}, {'3', "...­­", 1, 3}, {'4', "....­", 1, 4}, {'5', ".....", 1 , 5},
 {'6', "­....", 1, 6}, {'7', "­­...", 1, 7}, {'8', "­­­..", 1, 8}, {'9', "­­­­.", 1 , 9},
 {'.', ".­.­.­", 4, 9}, {',', "­­..­­", 4, 8}, {'?', "..­­..", 4, 11},{'!', "­.­.­­", 5, 1},
 {' ', " ", 5, 6},
};

/***
* SETUP
***/
void setup()
{
 //Serial.begin(115200); // Define o baud rate
 pinMode(pino_saida, OUTPUT); //Define por onde vai sair a MSG
 pinMode(pino_entrada, INPUT);

 pinMode(pinoONOFF, OUTPUT); // Pino com controle liga/desliga
 analogWrite(pinoPWM, 0); // Pino com controle PWM

 Serial.begin (9600);

 lcd.init();
 lcd.backlight();
 lcd.cursor();
 lcd.blink();

 //Pinos ligados aos pinos 34, 36, 38, 40 e 42 do Arduino ­ Linhas do botão circular
 pinMode(34, OUTPUT);
 pinMode(36, OUTPUT);
 pinMode(38, OUTPUT);
 pinMode(40, OUTPUT);
 pinMode(42, OUTPUT);

 //Pinos ligados aos pinos 44, 46, 48, 50 e 51 do Arduino ­ Linhas do teclado
 pinMode(44, OUTPUT);
 pinMode(46, OUTPUT);

105

 pinMode(48, OUTPUT);
 pinMode(50, OUTPUT);
 pinMode(52, OUTPUT);

 //Pinos ligados aos pinos 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 e 51 do Arduino ­ Colunas do
teldado
 pinMode(31, INPUT);
 pinMode(33, INPUT);
 pinMode(35, INPUT);
 pinMode(37, INPUT);
 pinMode(39, INPUT);
 pinMode(41, INPUT);
 pinMode(43, INPUT);
 pinMode(45, INPUT);
 pinMode(47, INPUT);
 pinMode(49, INPUT);
 pinMode(51, INPUT);

 //Pino ligado ao pino 44 do Arduino ­ Colunas do botão circular
 pinMode(32, INPUT);

 Serial.println("Aguardando acionamento das teclas...");
 Serial.println();
}

/***
* FUNÇÕES TECLADO/DISPLAY
***/
void teclado(){
 for (int ti = 34; ti<53; ti = ti+2)
 {
 //Alterna o estado dos pinos das linhas
 digitalWrite(34, LOW); //linha 1 botão circular
 digitalWrite(36, LOW); //linha 2 botão circular
 digitalWrite(38, LOW); //linha 3 botão circular
 digitalWrite(40, LOW); //linha 4 botão circular
 digitalWrite(42, LOW); //linha 5 botão circular

 digitalWrite(44, LOW); //linha 1
 digitalWrite(46, LOW); //linha 2
 digitalWrite(48, LOW); //linha 3
 digitalWrite(50, LOW); //linha 4
 digitalWrite(52, LOW); //linha 5
 digitalWrite(ti, HIGH);

 if (ti == 44){ //troca o número das linhas para 1 a 5
 x = 1;
 }else if(ti == 46){
 x = 2;
 }else if(ti == 48){

106

 x = 3;
 }else if(ti == 50){
 x = 4;
 }else if(ti == 52){
 x = 5;
 }else if(ti == 34){
 x = 6;
 }else if(ti == 36){
 x = 7;
 }else if(ti == 38){
 x = 8;
 }else if(ti == 40){
 x = 9;
 }else if(ti == 42){
 x = 10;
 }

 //Verifica se alguma tecla da coluna 1 foi pressionada
 if (digitalRead(51) == HIGH)
 {

 imprime_caracter(x, 1);
 while(digitalRead(51) == HIGH){}
 }

 //Verifica se alguma tecla da coluna 2 foi pressionada
 if (digitalRead(49) == HIGH) //49
 {

 imprime_caracter(x, 2);
 while(digitalRead(49) == HIGH){}; //49
 }

 //Verifica se alguma tecla da coluna 3 foi pressionada
 if (digitalRead(47) == HIGH)
 {

 imprime_caracter(x, 3);
 while(digitalRead(47) == HIGH){}
 }

 //Verifica se alguma tecla da coluna 4 foi pressionada
 if (digitalRead(45) == HIGH)
 {

 imprime_caracter(x, 4);
 while(digitalRead(45) == HIGH){}
 }

 //Verifica se alguma tecla da coluna 5 foi pressionada

107

 if (digitalRead(43) == HIGH)
 {

 imprime_caracter(x, 5);
 while(digitalRead(43) == HIGH){}
 }

 //Verifica se alguma tecla da coluna 6 foi pressionada
 if (digitalRead(41) == HIGH)
 {

 imprime_caracter(x, 6);
 while(digitalRead(41) == HIGH){}
 }

 //Verifica se alguma tecla da coluna 7 foi pressionada
 if (digitalRead(39) == HIGH)
 {

 imprime_caracter(x, 7);
 while(digitalRead(39) == HIGH){}
 }

 //Verifica se alguma tecla da coluna 8 foi pressionada
 if (digitalRead(37) == HIGH)
 {

 imprime_caracter(x, 8);
 while(digitalRead(37) == HIGH){}
 }

 //Verifica se alguma tecla da coluna 9 foi pressionada
 if (digitalRead(35) == HIGH)
 {

 imprime_caracter(x, 9);
 while(digitalRead(35) == HIGH){}
 }

 //Verifica se alguma tecla da coluna 10 foi pressionada
 if (digitalRead(33) == HIGH)
 {
 imprime_caracter(x, 10);
 enter (x, 10);
 while(digitalRead(33) == HIGH){}
 }

 //Verifica se alguma tecla da coluna 11 foi pressionada
 if (digitalRead(31) == HIGH)
 {

108

 imprime_caracter(x, 11);
 backspace (x, 11);
 while(digitalRead(31) == HIGH){}
 }

 //Verifica se alguma tecla do botão circular foi pressionada
 if (digitalRead(32) == HIGH)
 {

 imprime_caracter(x, 12);
 if(x == 6){
 Serial.println("direita");
 proxMsg();

 }else if(x == 7){
 Serial.println("OK");

 }else if(x == 8){
 Serial.println("desce");
 sobe();

 }else if(x == 9){
 desce();
 Serial.println("sobe");

 }else if(x == 10){
 Serial.println("esquerda");
 msgAnt();
 }

 while(digitalRead(32) == HIGH){}
 }
 }

}

void imprime_caracter(int x, int y)
{
 for (int j = 0; j < n_caracteres ; j++){
 if(matriz[j].linha == x && matriz[j].coluna == y){

 char letra = matriz[j].character;
 Serial.print(letra);

 lcd.cursor();
 lcd.blink();
 lcd_col++;
 lcd.setCursor(lcd_col, 0);

 mensagem = mensagem + letra;

109

 lcd.clear();
 lcd.setCursor (0,0);
 lcd.print(mensagem);
 Serial.print (" ");
 Serial.println (mensagem);
 }
 }
}

void backspace (int x, int y){

 if(x == 1 && y == 11){
 if(lcd_col > 0){

 lcd_col­­;
 lcd.setCursor(lcd_col, 0);
 lcd.write(' ');
 lcd.setCursor(lcd_col, 0);

 mensagem.remove(mensagem.length()­1);

 Serial.print (" ");
 Serial.println (mensagem);
 }
 }
}

void enter (int x, int y){

 if(x == 3 && y == 10){

 //lcd.home();
 lcd.clear();
 lcd_col = 0;
 lcd.setCursor(lcd_col, 0);
 mensagem = "e" + mensagem; // Coloca um ponto na frente da mensagem para acionar o
modo TX do rádio e evitar perda de dados
 envio_MSG_morse(mensagem); // Função que envia a MSG por código Morse
 mensagem = "";
 }
}

void proxMsg(){
 if(posUltMsg ­ 1 > posMsgTela){
 posMsgTela++;
 String msgAtual = mensagens[posMsgTela];
 zeraLinhas(); //limpos as linhas
 imprimeLcd(msgAtual);
 }
}

110

void msgAnt(){
 if(posMsgTela > 0){
 posMsgTela­­;
 String msgAtual = mensagens[posMsgTela];
 zeraLinhas(); //limpos as linhas
 imprimeLcd(msgAtual);
 }
}

void sobe(){
 if(linhas[posLinhaExibida + 1] != ""){
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(linhas[posLinhaExibida + 1]);

 lcd.setCursor(0, 1);
 lcd.print(linhas[posLinhaExibida + 2]);

 lcd.setCursor(0, 2);
 lcd.print(linhas[posLinhaExibida + 3]);

 lcd.setCursor(0, 3);
 lcd.print(linhas[posLinhaExibida + 4]);

 posLinhaExibida = posLinhaExibida + 4;
 }
}

void desce(){
 if(posLinhaExibida ­ 4 >= 0){
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(linhas[posLinhaExibida ­ 7]);

 lcd.setCursor(0, 1);
 lcd.print(linhas[posLinhaExibida ­ 6]);

 lcd.setCursor(0, 2);
 lcd.print(linhas[posLinhaExibida ­ 5]);

 lcd.setCursor(0, 3);
 lcd.print(linhas[posLinhaExibida ­ 4]);

 posLinhaExibida = posLinhaExibida ­ 4;
 }
}

void imprimeLcd(String texto){
 texto += fimMsg;

111

 while(texto.length() > 0){
 lcd.noBlink();
 lcd.noCursor();
 lcd.clear();
 lcd.setCursor(0, 0);
 String msg1 = texto.substring(0,20);
 msg1.trim();
 linhas[poslinha] = msg1;
 poslinha++;
 texto.remove(0,20);
 lcd.print(msg1);

 lcd.setCursor(0, 1);
 String msg2 = texto.substring(0,20);
 msg2.trim();
 linhas[poslinha] = msg2;
 poslinha++;
 texto.remove(0,20);
 lcd.print(msg2);

 lcd.setCursor(0, 2);
 String msg3 = texto.substring(0,20);
 msg3.trim();
 linhas[poslinha] = msg3;
 poslinha++;
 texto.remove(0,20);
 lcd.print(msg3);

 lcd.setCursor(0, 3);
 String msg4 = texto.substring(0,20);
 msg4.trim();
 linhas[poslinha] = msg4;
 posLinhaExibida = poslinha;
 poslinha++;
 texto.remove(0,20);
 lcd.print(msg4);
 delay(1500);
 }
}

void zeraLinhas(){
 poslinha=0; //zera a posição da linha
 int i = 0;
 while (linhas[i] != ""){
 linhas[i] = "";
 i++;
 }
}
/***
* FUNCÃO DE RECEPÇÃO
***/

112

String RX() { // Recebe String codificada em Morse

 char caracter_lido; // Caractere lido
 String msg_recebida = ""; // Mensagem recebida
 String codigo_lido = ""; // Código Morse sendo lido
 boolean espaco = true; // Flag de espaço
 unsigned long tempo_anterior = millis(); // Tempo anterior
 unsigned long tempo_do_pulso = 0; // Tempo do caractere

 while (millis() ­ tempo_anterior < 6 * tempo_do_ponto) { // Aguarda mensagem por 7 pontos =
espaço entre palavras
 teclado();
 if (analogRead(pino_entrada)) {

 tempo_do_pulso = millis(); // Inicio de sinal

 while (analogRead(pino_entrada));

 tempo_do_pulso = millis() ­ tempo_do_pulso;

 if (tempo_do_pulso < tempo_do_ponto + tempo_do_ponto / 3 && tempo_do_pulso > (2
* tempo_do_ponto)/3) {
 codigo_lido += "."; // Ponto
 //Serial.print(".");
 }

 if (tempo_do_pulso > tempo_do_ponto * 2 && tempo_do_pulso < tempo_do_ponto * 4) {
 codigo_lido += "­";// Traço
 //Serial.print("­");
 }

 delay(tempo_do_ponto / 10); // espera para não perder buffer
 tempo_anterior = millis();
 }
 if (millis() ­ tempo_anterior > tempo_do_ponto * 3 && !espaco) {

 // Espaço
 msg_recebida += " ";

 Serial.print(" / ");
 espaco = true;
 }

 if (millis() ­ tempo_anterior > tempo_do_ponto && codigo_lido != ""){

 Serial.print (codigo_lido);

 for (int i = 0 ; i < n_caracteres ; i++){
 if(matriz[i].codigo == codigo_lido){

113

 caracter_lido = matriz[i].character;
 Serial.print(" " + String(caracter_lido) + " ");
 codigo_lido = "";

 msg_recebida += caracter_lido; // Cria a mensagem a partir de cada caracter recebido
 espaco = false;

 }// end if
 }//end for
 }
 } //END WHILE

 msg_recebida.trim(); //Retira os espaços do início e do final da mensagem recebida
 return msg_recebida;
}// END RX()

/***
* FUNCÃO DE TRANSMISSÃO
***/
void envio_MSG_morse(String texto) // Envia MSG codificada em código Morse
{
 String cod_caracter;
 for (int i = 0; i < texto.length(); i ++) // Percorre o texto para pegar cada um dos caracteres
 {
 char caracter = toupper(texto[i]);// pega o caracter em maiusculo
 for (int j = 0 ; j < n_caracteres ; j++) // For para percorrer o struct (biblioteca_morse)
 {
 if (caracter == matriz[j].character) // Acha o código equivalente ao caracter selecionado
 {
 cod_caracter = matriz[j].codigo;
 }
 }

 Serial.print(caracter); // Imprime o caracter
 cod_caracter.trim();//Remove quaisquer espaços no começo ou final da String
 Serial.print(" " + cod_caracter + " "); // Imprime na saída serial os caracteres em codigo Morse
 for (byte i = 0; i < cod_caracter.length(); i++) // Envia o código morse para o PIN 13 (Rádio)
 {
 switch (cod_caracter[i]) {
 case '.': // Se DIT (ponto) chama a função DIT
 DIT();
 break;
 case '­': // Se DAH (traço) chama a função DAH
 DAH();
 break;
 default:
 vazio(); // espaço entre os DIT ou DAH
 break;
 }
 }

114

 vazio(); //espaço entre caracteres
 }
Serial.println ("");
}

void DIT() // Envia um tempo_do_ponto (um ponto)
{
 digitalWrite(pino_saida, HIGH);
 delay(tempo_do_ponto); // Entre cada tempo_do_ponto há uma pausa de mesma duração de
um ponto
 digitalWrite(pino_saida, LOW);
 delay(tempo_do_ponto);
}

void DAH() // Envia dah (traço) que equivale a três pontos
{
 digitalWrite(pino_saida, HIGH);
 delay(tempo_do_ponto * 3);
 digitalWrite(pino_saida, LOW);
 delay(tempo_do_ponto);
}

void vazio() { // Envia intervalo vazio
 delay(tempo_do_ponto * 2);
}

/***
* LOOP
***/
void loop()
{
 teclado();
 if (Serial.available()) // Se tiver alguma mensangem entra na condicional
 {
 String msg = Serial.readString(); // Lê os caracteres do serial e os armazena em uma string
 msg.trim(); //Remove quaisquer espaços no começo ou final da String
 if (msg != "") // Se a MSG não for vazia ele envia ela por código Morse
 {
 msg = "e" + msg; // Coloca um ponto na frente da mensagem para acionar o modo TX do
rádio e evitar perda de dados
 envio_MSG_morse(msg); // Função que envia a MSG por código Morse
 }
 }

 String msg_recebida = RX();

 if (imprimiu == 0){
 msg_recebida = mensagem1;
 }

115

 if (imprimiu == 1){
 msg_recebida = mensagem2;
 }

 if (imprimiu == 2){
 msg_recebida = mensagem3;
 }
 imprimiu++;

 if (msg_recebida != "") {

 mensagens[posUltMsg] = msg_recebida;
 posMsgTela = posUltMsg;
 posUltMsg++;
 zeraLinhas(); //limpos as linhas
 imprimeLcd(msg_recebida);

 Serial.println("\n" + msg_recebida);// Mensagem recebida

 byte espaco = msg_recebida.indexOf(" ");// Efetua tratamento
 String comando = msg_recebida.substring(0, espaco);
 int valor = msg_recebida.substring(espaco + 1).toInt();

 if (comando == "LIGA") { // Verifica comando

 digitalWrite(pinoONOFF, HIGH); // Ligar pino
 } else if (comando == "DESLIGA") { // Desligar pino

 digitalWrite(pinoONOFF, LOW);
 } else if (comando == "PWM") { // Controle PWM

 analogWrite(pinoPWM, valor);
 }
 }
} // END LOOP

