
Este estudo tem por finalidade fornecer informações
que possam contribuir para o desenvolvimento de uma
ferramenta de criptografia e descriptografia de dados
que atendam às demandas das operações militares
conduzidas pelo Exército Brasileiro. A partir de uma
análise sumária, da literatura existente sobre o tema,
serão definidos os requisitos para o desenvolvimento de
uma ferramenta que implementa algoritmos de
criptografia e descriptografia em uma interface gráfica,
garantindo segurança, desempenho e simplicidade para
que o usuário final possa proteger suas informações das
diversas ameaças cibernéticas atuais, de forma eficiente
e segura.

criptografia, algoritmo, dados,
segurança, exército

A finalidade deste trabalho é apresentar
como produto final uma aplicação digital que
seja capaz de criptografar e descriptografar
dados com uma interface gráfica intuitiva que
atenda às necessidades de uma operação
militar do Exército Brasileiro.

Criptografar uma informação consiste
em torná-la ininteligível para quem não
deveria possuir acesso a ela. É essencial para
qualquer instituição que precise manter sigilo
sobre seus dados ou protegê-los de potenciais
ameaças cibernéticas.

Com o avanço da tecnologia e o
advento da Guerra Cibernética, torna-se
fundamental a criação de medidas de proteção
que garantam a segurança da informação no
âmbito do Exército Brasileiro, sobretudo nas

Os desafios de gerenciar riscos, evitar
ameaças e mitigar danos estão essencialmente
conectados ao estabelecimento de uma rede
de comunicações segura e eficiente.

Diante desta realidade, faz-se
necessário o fortalecimento da mentalidade de
segurança da informação. O desenvolvimento
de uma ferramenta de criptografia de dados
confiável e de fácil operação é uma maneira
concreta de contribuir para esta mentalidade.

O Exército Brasileiro, enquanto uma das
instituições responsáveis pela defesa da
soberania nacional, deve estar
constantemente capacitado para garantir que
seus dados permaneçam inacessíveis para
usuários não autorizados.

Uma falha de segurança que prejudique
o princípio da confidencialidade das
informações pode colocar em circulação
inapropriada desde detalhes operacionais e
logísticos até dados sensíveis sobre a tropa.

Assegurar a proteção de dados é um
fator determinante, tanto para a manutenção
da imagem da Força, quanto para a segurança
e a eficácia de uma operação militar.

A evolução dos meios tecnológicos
aumenta a demanda por sistemas de
segurança e exige que as ferramentas
existentes de segurança da informação
estejam constantemente se atualizando.

Paralelo a este fator, faz-se necessária a

adaptação desses recursos às necessidades das
operações militares do Exército Brasileiro, de
modo que possam ser empregados, inclusive,
por indivíduos não qualificados, através de
uma aplicação que indique intuitivamente as
etapas de um processo de criptografia ou
descriptografia de uma informação.

Esta pesquisa busca contribuir para o
desenvolvimento de uma ferramenta de
criptografia que atenda às demandas de
proteção de dados por parte do Exército
Brasileiro contra potenciais ameaças internas e
externas em operações militares.

O artigo em sua primeira seção
contextualiza a importância da criptografia no
campo da proteção cibernética, abordando os
princípios da segurança da informação.

A Revisão de Literatura apresenta
conceitos importantes para o estudo tais como
os de criptografia simétrica e assimétrica,
alguns dos principais algoritmos de
criptografia, - AES (Advanced Encryption
Standard) e RSA (Rivest-Shamir-Adleman) -
oferecendo uma análise comparativa de sua
eficiência e segurança, e o conceito de
Serão incluídas referências a autores
conceituados sobre segurança em redes de
computadores e criptografia, que exploram
essas ideias.

Na seção de Métodos de Pesquisa, será
apresentada a concepção geral da ferramenta
a ser desenvolvida. Serão identificadas as
funcionalidades essenciais que a aplicação
deve possuir, as etapas do processo de
criptografia e descriptografia e a criação de
uma interface gráfica intuitiva. Um exemplo
prático seria a inclusão de uma funcionalidade
para criptografar e descriptografar arquivos
como documentos PDF, diretamente pela
interface. Os dados coletados para avaliação
da eficácia da ferramenta serão obtidos por
meio de testes da mesma por potenciais
usuários.

A seção de Implementação abordará as
tecnologias utilizadas, como para a
programação da ferramenta e o uso de
bibliotecas como para a

implementação dos algoritmos de criptografia.
Já a seção sobre a Interface Gráfica explicará a
criação de um design intuitivo utilizando

como .
Na parte de Testes de Segurança e

Desempenho, serão detalhados os testes
realizados para avaliar a robustez da
ferramenta contra-ataques de força bruta e o
tempo de processamento em diferentes
cenários.

Por fim, a Documentação e POP
(Procedimentos Operacionais Padrão)
apresentarão as instruções de uso e
manutenção da ferramenta, acompanhada de
exemplos práticos de utilização em operações
militares.

A criptografia é uma forma de
segurança que permite a troca segura de
informações em um mundo ameaçado. Para
Schneier (1996, p. 21), “é a arte e a ciência de
manter mensagens seguras” (tradução nossa).

O processo de criptografar uma
informação consiste em torná-la inacessível
para um indivíduo não autorizado. É uma
prática que busca manter a confidencialidade,
a autenticidade e a integridade de um dado.

A criptografia é essencial para proteger
dados sensíveis que circulam em redes de
comunicação, especialmente em situações de
combate ou operações de inteligência. Não por
acaso, como explica Tanenbaum (2011, p.
148), os militares tiveram papel importante no
desenvolvimento dessa arte e definiram as
bases para futuras tecnologias.

Explica Stallings (2015, p. 21), que a
criptografia simétrica ou de chave privada, é
uma técnica em que a mesma chave é utilizada
para cifrar e decifrar dados, exigindo que
ambas as partes da comunicação
compartilhem essa chave de forma segura.

A utilização de uma chave criptográfica
única permite a implementação deste método
de segurança de maneira facilitada e é
preferível para situações que priorizem a
velocidade e a maior quantidade de

informação, por conta do menor consumo de
recursos dos equipamentos disponíveis.

Ferguson, Schneier e Kohno concordam
que (2010, p. 28) a criptografia simétrica
oferece maior eficiência computacional, sendo
adequada para sistemas onde há grande
volume de dados a serem processados em
tempo real.

 - Criptografia Simétrica.

Fonte: os autores.

O algoritmo AES foi desenvolvido como
um sucessor ao algoritmo DES (

), que se tornou vulnerável
a ataques de força bruta devido ao aumento
das capacidades operacionais dos
equipamentos modernos.

Diante deste novo cenário, o AES foi
projetado para ser rápido, seguro e eficiente,
com a capacidade de operar com chaves de
diferentes tamanhos, o que aumenta sua
segurança contra-ataques.

Buscando transpor este obstáculo da
vulnerabilidade a ataques de força bruta, o
algoritmo AES foi estruturado para operar com
três tamanhos de chave: 128, 192 e 256 bits,
enquanto o anterior, DES, destinava 56 bits da
chave para a cifração da informação.

A principal vantagem do AES é a sua
robustez contra-ataques de força bruta, sendo
que, com chaves de 256 bits, o número de
possíveis combinações torna praticamente
inviável qualquer tentativa de quebra do
algoritmo com a tecnologia atual.

O algoritmo AES, desta maneira,
conforme Daemen e Rijmen (2002, p. 147)
permite uma grande flexibilidade no
comprimento do bloco sem perder as
propriedades de eficiência e alta resistência
contra criptoanálise. Este equilíbrio entre
segurança e desempenho, permite sua
aplicação em várias plataformas e protocolos,

desde dispositivos móveis até redes de alto
desempenho.

- Estimativas para ataques de ‘força bruta’ em
algoritmos simétricos.

$100 K 3,5 horas 37 dias 10^13 anos 10^18 anos

$1 M 21 minutos 4 dias 10^12 anos 10^17 anos

$10 M 2 minutos 9 horas 10^11 anos 10^16 anos

$100 M 13 segundos 1 hora 10^10 anos 10^15 anos

$1 G 1 segundo 5,4 minutos 10^9 anos 10^14 anos

$10 G 0,1 segundos 32 segundos 10^8 anos 10^13 anos

$100 G 0,01 segundos 3 segundos 10^7 anos 10^12 anos

$1 T 1 milissegundo 0,3 segundos 10^6 anos 10^11 anos

Fonte: NAKAMURA, Emílio Tissato. GEUS, Paulo Lício de.
. 1ª. ed. São Paulo: Novatec Editora,

2007. Reimpro. 2012, Tabela 9.3, p. 311. Estimativas para ataques de
‘força bruta’ em algoritmos simétricos.

Stallings (2015, p. 200) afirma que a
criptografia assimétrica ou de chave pública
oferece uma mudança radical no processo
anterior, já que, ao contrário da criptografia
simétrica, não requer que as partes envolvidas
compartilhem uma chave secreta.

Esse método de proteção de dados faz
uso de um par de chaves nas suas operações:
uma chave privada e uma chave pública. Esta
pode ser compartilhada abertamente e
utilizada para criptografar os dados que se
deseja transmitir por um canal de
comunicação seguro; aquela deve ser mantida
com seu proprietário e utilizada para decifrar
os dados recebidos.

“A principal vantagem de tais sistemas
é que fornecer chaves públicas autênticas é
geralmente mais fácil do que distribuir chaves
secretas de uma forma segura, conforme
exigido em sistemas de chaves simétricas”
(MENEZES, VAN OORSCHOT e VANSTONE,
1996 , p. 283, tradução nossa).

Sua escolha está relacionada às
operações que não demandam grande volume
de dados ou velocidade, uma vez que consome
mais recursos computacionais.

Outra vantagem dessa forma de
criptografia é a garantia do princípio de
autenticidade da informação. Além de ser
necessário o par de chaves do destinatário
para que o conteúdo seja devidamente cifrado
e decifrado, o par de chaves do remetente

pode ser utilizado para assinar digitalmente a
mensagem com a sua chave privada. Dessa
maneira, o destinatário, de posse da chave
pública do remetente, terá condições de
verificar se ela foi enviada por ele.

“As assinaturas digitais permitem um
método de assegurar que a mensagem é
autêntica para um usuário e que ela de fato se
origina da pessoa que alega tê-la enviado”
(PAAR e PELZL, 2010, p. 259, tradução nossa).
Schneier (1996, p. 62) as compara com as
assinaturas manuscritas, como prova de
autenticidade.

- Criptografia assimétrica.

Fonte: os autores.

O algoritmo RSA, Rivest-Shamir-
Adleman, se baseia na dificuldade de fatoração
de números inteiros grandes, razão pela qual,
segundo Stallings (2015, p. 207), desde o seu
desenvolvimento segue como a técnica de uso
geral mais aceita e implementada para a
encriptação de chave pública.

O processo criptográfico do algoritmo
se inicia com a seleção de dois números primos
grandes, com centenas de dígitos. O produto
da multiplicação entre esses dois números
gera um valor que será usado nas operações
matemáticas seguintes para criar o par de
chaves, pública e privada, garantindo a
segurança e a integridade da comunicação.

Pela própria natureza matemática do
problema, o tempo exponencial para resolvê-
lo torna a operação em questão impraticável,
mesmo para os computadores mais avançados
tecnologicamente.

“Fazendo com que cada um dos fatores
tenha 100 dígitos, a multiplicação pode ser
feita em uma fração de segundo, mas a
fatoração exigiria bilhões de anos, usando o
melhor algoritmo conhecido” (HELLMAN,

1978, p. 45, tradução nossa).
Em concordância com Katz e Lindell

(2007, p. 231), que relacionam a criptografia
moderna a problemas matemáticos, o RSA
exemplifica a eficácia da teoria dos números
aplicada ao contexto de segurança da
informação.

“Ainda que os algoritmos de fatoração
estejam constantemente se desenvolvendo, a
situação atual ainda está longe de representar
uma ameaça para a segurança do RSA, quando
ela é usada adequadamente” (BONEH, 1999, p.
204, tradução nossa).

Fatoração de chaves do algoritmo
assimétrico.

512 < 200 8 meses

728 100.000 300 anos

1024 3 x 107 105 anos

1280 3 x 109 107 anos

1536 2 x 1011 108 anos

2048 4 x 1014 1,3 x 1012 anos

Fonte: NAKAMURA, Emílio Tissato. GEUS, Paulo Lício de.
. 1ª. ed. São Paulo: Novatec Editora,

2007. Reimpr. 2012, Tabela 9.4, p. 311. Fatoração de chaves do
algoritmo assimétrico.

A técnica de ou geração de
, consiste em transformar, com processos

matemáticos, dados de tamanho variável em
uma saída de tamanho fixo, a qual se dá o
nome de Segundo Rivest (1992, p. 5), as
funções (ou) são utilizadas para
criar “impressões digitais” de dados,
permitindo que grandes quantidades de
informação sejam resumidas em um pequeno
valor fixo.

O gerado é composto de uma
sequência de caracteres única, resultado de
uma operação unilateral. Isso significa que sua
reversão é altamente improvável, uma vez que
deveriam ser testadas todas as combinações
possíveis para obter a entrada original.

Pelo mesmo motivo de que a
quantidade de combinações possíveis para
gerar um dificulta sua reversão, também
torna bastante improvável que duas entradas
diferentes gerem a mesma saída, ou seja, uma
colisão. Apesar de ser possível, os algoritmos
modernos são projetados para serem

resistentes a essa remota possibilidade, como
por exemplo o algoritmo SHA-256.

“Um hash é um exemplo do que é
chamado de função unidirecional, uma função
fácil de calcular, mas difícil de inverter, para
que a mensagem original não possa ser
recuperada” (DIFFIE e LANDAU, 2007, p. 253,
tradução nossa).

Essa técnica garante ainda que com a
menor alteração nos dados, o seja
alterado completamente. Essa é mais uma
maneira de verificar a integridade da
informação.

- O espaço das chaves e o tempo de
processamento necessário.

Letras minúsculas
(26)

8 x
10^9

2,2 horas 2,1 x
10^11

2,4 dias

Minúsculas e
dígitos (36)

7,8 x
10^10

22 horas 2,8 x
10^12

33 dias

Alfanuméricos (62) 3,5 x
10^12

41 dias 2,2 x
10^14

6,9 anos

Caracteres
imprimíveis (95)

7 x
10^13

2,2 anos 6,6 x
10^15

210 anos

Caracteres ASCII
(128)

5,6 x
10^14

18 anos 7,2 x
10^16

2300
anos

Caracteres ASCII de
8 bits (256)

7,2 x
10^16

2300 anos 1,8 x
10^19

580000
anos

Fonte: NAKAMURA, Emílio Tissato. GEUS, Paulo Lício de.
. 1ª. ed. São Paulo: Novatec Editora,

2007. Reimpr. 2012, Tabela 9.2, p. 310. Fatoração de chaves do
algoritmo assimétrico.

O desafio da implementação de um
sistema de criptografia adequado também é
preocupação da Força Terrestre. É um
requisito básico para que as operações
militares ocorram sem o risco de
comprometimento.

A importância da proteção cibernética
se dá desde os escalões mais altos, com, por
exemplo, a definição de uma Doutrina Militar
de Defesa Cibernética (MD31-M-07, 2023), até
os níveis mais elementares.

Conforme a Diretriz Estratégica
Organizadora do Sistema de Comando e
Controle do Exército (EB10-D-01.013, 2021), “a
criptografia deve ser empregada de forma
extensiva para garantir a segurança da

informação e a proteção dos dados críticos em
redes de comando e controle” (p. 22).

A segurança cibernética também é
abordada no Manual de Guerra Cibernética
(EB70-MC-10.232, 2017), que destaca a
necessidade de uma infraestrutura cibernética
resiliente capaz de suportar ataques e manter
a continuidade das operações de comando e
controle. O uso do algoritmo AES no Sistema
de Comando e Controle da Força Terrestre e
em outros sistemas de comunicação
demonstra a adaptação do Exército Brasileiro
às melhores práticas globais de segurança da
informação.

O crescimento das ameaças
cibernéticas e dos ataques direcionados a
infraestruturas críticas incentiva as Forças
Armadas a adotarem uma abordagem proativa
no que tange à proteção cibernética.

A metodologia seguiu uma abordagem
empírica e exploratória, visando implementar
soluções robustas de criptografia de dados que
garantem a confidencialidade, integridade e
autenticidade das informações em cenários
críticos. A pesquisa combinou uma revisão
bibliográfica com desenvolvimento prático,
permitindo identificar e aplicar melhores
práticas em segurança cibernética.

Através da aplicação
, que permite a edição de códigos de

programação, foi desenvolvido em linguagem
um executável que permita a

criptografia ou descriptografia baseada em
uma combinação dos dois algoritmos
referenciados.

O algoritmo AES-256 é utilizado para
garantir a confidencialidade e a integridade
dos dados transmitidos, enquanto o algoritmo
RSA-4096 é empregado no gerenciamento das
chaves simétricas geradas. Esta conjunção
proporciona o equilíbrio ideal entre segurança
e eficiência para a criação de um método
robusto de segurança de dados sensíveis.

Além dos algoritmos principais, a
pesquisa também investigou soluções

complementares, como derivação de chaves
seguras e assinaturas digitais. Essas técnicas
adicionaram camadas extras de proteção e
garantiram a autenticidade das informações,
evitando modificações maliciosas durante a
transmissão.

O desenvolvimento da solução seguiu
um processo gradual, com ajustes realizados
conforme necessário ao longo da
implementação. Essa abordagem possibilitou
uma integração eficiente entre teoria e prática,
assegurando que os algoritmos selecionados
fossem adequados e atendessem aos
requisitos do estudo. A criptografia simétrica
(AES-256) foi utilizada para lidar com grandes
volumes de dados, enquanto a criptografia
assimétrica (RSA-4096) garantiu a proteção
das chaves simétricas.

Por fim, a inclusão de assinaturas
digitais assegurou a integridade e
autenticidade das informações trocadas,
resultando em uma solução equilibrada entre
segurança e eficiência. A metodologia aplicada
garantiu que a solução atendesse às
necessidades de segurança em ambientes
críticos, como centros de controle e
infraestruturas sensíveis.

- Criptografia híbrida.

Fonte: os autores.

A primeira etapa no desenvolvimento
do é a importação de bibliotecas
necessárias para garantir que todas as
funcionalidades da ferramenta de criptografia
estejam disponíveis. Cada biblioteca
desempenha um papel essencial para o
funcionamento adequado da ferramenta,

conforme a Tabela 1.

- Bibliotecas

Tkinter

Criar uma interface gráfica que
facilita a interação com o usuário,

através de elementos como
janelas, botões e caixas de

diálogo

PyCryptodome Fornecer os algoritmos de
criptografia e utilizados

Base64
Converter dados binários (como o

arquivo criptografado) para um
formato de texto legível

OS Permitir a manipulação de
arquivos e caminhos de arquivos

Datetime
Registrar a data e a hora em que
as operações são realizadas, para
fins de auditoria e rastreamento

Fonte: os autores

As funções são os elementos que
conduzem a operação do . A exposição
procurou seguir uma sequência lógica que
acompanhe o funcionamento do programa.
Conforme a próxima função é acionada, o
trabalho fornece sua explicação respectiva.

O código completo e as instruções de
uso da aplicação estão disponíveis no Apêndice
A deste estudo.

O programa deve ser executado
diretamente pelo usuário. Caso não haja erros
na execução, a interface gráfica criará uma
janela para interação com o usuário.

As opções são apresentadas de forma
simples e intuitiva para fácil entendimento do
usuário. Cada um dos botões é responsável por

acionar uma função específica: gerar chaves
RSA, criptografar e descriptografar arquivos.

- Tela inicial da interface gráfica do aplicativo.

Fonte: os autores.

A função do primeiro botão é a geração
de um par de chaves utilizando o algoritmo
RSA, de criptografia assimétrica.

O programa solicitará um nome a ser
usado para salvar os arquivos que contém a
chave privada e a chave pública. A chave
privada, por sua vez, deverá ser protegida por
meio de uma senha também fornecida e
confirmada pelo usuário.

Ambas as chaves são geradas por meio
do algoritmo RSA com 4096 bits de
comprimento. A chave privada será protegida
pelo algoritmo AES com 128 bits, fornecendo
mais uma camada de segurança.

Ao final da execução, o programa exibe
uma mensagem de confirmação do usuário e o
par de chaves é salvo no mesmo diretório do

.

Mensagem de confirmação do aplicativo.

Fonte: os autores.

O segundo botão ativa a função para
encriptar o arquivo a ser selecionado pelo

usuário. Para esta operação é necessário que
as chaves sejam geradas na etapa anterior.

O programa, com o algoritmo AES-256,
gera uma nova chave simétrica, que é usada
para cifrar o arquivo selecionado. Foi inserido
como recurso adicional o modo GCM
(), que cria uma espécie
de de autenticação que detecta qualquer
modificação no arquivo após a criptografia. Se
for detectada alguma alteração, a etapa da
descriptografia não poderá ser realizada
corretamente.

Conforme o funcionamento da
criptografia híbrida, a chave pública do
destinatário é utilizada para cifrar a segunda
chave simétrica, que foi criada nessa mesma
etapa, enquanto a chave privada do remetente
funciona como assinatura digital, para
certificar que o arquivo foi enviado pelo
usuário correto.

O arquivo final criptografado é
composto pelos seguintes elementos: o
próprio conteúdo do arquivo (cifrado com a
chave AES-256), a chave AES-256 (cifrada pela
chave pública do destinatário), a de
autenticação (gerada pelo modo de operação
GCM) e a assinatura digital. O produto é salvo
no mesmo diretório com a extensão ‘.enc’ e o
programa exibe ao usuário uma mensagem de
confirmação.

- Processo de criptografia assimétrica com
assinatura digital e autenticação com as chaves pública
e privada.

Fonte: os autores.

A terceira e última alternativa que a
aplicação disponibiliza opera a decifração de
um arquivo previamente criptografado.
Semelhante à etapa anterior, é necessário
importar a chave privada do destinatário e a

chave pública do remetente junto com o
arquivo a ser decifrado.

A ferramenta, de posse da chave
privada do destinatário, descriptografa o
conteúdo do arquivo. Durante esse processo, a

de autenticação é verificada: se houver
qualquer alteração no arquivo, o processo
falha; caso contrário, segue normalmente.

Com a chave pública do remetente, a
assinatura digital é confirmada e por fim, o
conteúdo é salvo no formato original e uma
mensagem de sucesso é exibida para o usuário.

A fim de possibilitar a auditoria ou
rastreamento das atividades realizadas pela
ferramenta, foi inserida também uma função
que armazena todos os registros em um
arquivo nomeado “security_log.txt”.

 Os testes da ferramenta evidenciaram
uma boa aceitação das suas funcionalidades. A
interface possibilitou rápida e fácil
comunicação com o usuário e os requisitos de
segurança foram atendidos,

O programa foi disponibilizado para
usuários de um grupo de controle específico
que a empregaram para cifrar arquivos de
variados formatos e tamanhos.

A aliança dos dois tipos de criptografia,
simétrica e assimétrica, permitiu a robustez da
codificação e a eficiência no processamento
dos dados, resultando em uma aplicação que
pode ser aplicada em diferentes cenários
operacionais.

Este foi projetado para ser uma
ferramenta prática e segura para criptografia
de arquivos, utilizando algoritmos robustos
como AES e RSA. Cada etapa do processo é
cuidadosamente organizada para garantir que
os dados estejam protegidos durante todo o
ciclo de vida, desde a geração das chaves até a
criptografia e descriptografia dos arquivos.

A interface gráfica simples permite que

qualquer usuário, independentemente do
nível de conhecimento técnico, possa usar a
ferramenta com facilidade.

O desenvolvimento deste foi
motivado pela necessidade de criar uma
solução que possa atender aos desafios de
Segurança Cibernética enfrentados em
ambientes sensíveis, como Centros de
Comando e Controle do Exército Brasileiro ou
demais órgãos de Comunicações.

A principal preocupação é a
manutenção da confidencialidade, da
integridade e da autenticidade dos dados,
evitando que informações sensíveis sejam
acessadas ou modificadas por agentes não
autorizados.

Nesse contexto, a ferramenta de
criptografia desenvolvida tem como objetivo
garantir a segurança das comunicações e do
armazenamento de dados de forma eficiente e
prática, mesmo para usuários que não
possuem conhecimento técnico avançado.

Com a finalidade de avaliar o
desempenho da ferramenta desenvolvida, foi
utilizado um computador com as seguintes
características: Sistema Operacional Windows
64, CPU i5 (5ª geração) e 8GB de memória
RAM, com os resultados conforme tabela e
figuras abaixo:

Primeira rodada de testes

175MB 8 segundos 5 segundos
870 MB 50 segundos 30 segundos

- Processamento durante a criptografia do
arquivo de 870MB.

Fonte: os autores

- Processamento durante a descriptografia do
arquivo de 870MB.

Fonte: os autores.

Testes semelhantes foram realizados
em outro computador de características
semelhantes, porém com um processador i5
de 13ª geração. Os resultados se deram
conforme abaixo:

Segunda rodada de testes

100MB 17 segundos 32 segundos
775MB 23 segundos 35 segundos

 – Processamento durante a criptografia do
arquivo de 100MB.

Fonte: os autores.

- Processamento durante a descriptografia
do arquivo de 100MB.

Fonte: os autores.

A ferramenta mostrou-se eficiente
tanto na sua funcionalidade quanto no tempo
de execução. As variações do funcionamento
entre as máquinas foram percebidas dentro
de uma margem aceitável.

Além da avaliação do desempenho da
aplicação, outro exame necessário é o da
validade dos arquivos de chaves gerados pelo
programa. Esta verificação de integridade
permite a correta execução da ferramenta sem
comprometimento da segurança.

Com o comando , pode-se
verificar se a chave está no formato correto e
não corrompida, evitando falhas na operação.

Teste de validação da chave privada

Fonte: os autores.

Também é possível checar as
informações e propriedades do arquivo de
chave, garantindo que ele está pronto para
uso.

- Teste de validação da chave pública

Fonte: os autores.

A robustez da criptografia
implementada na aplicação praticamente
inviabiliza que os computadores mais
avançados atualmente consigam tentar todas
as combinações possíveis contra os algoritmos.

Executando um programa para realizar
ataques de força bruta, foram determinadas
200.000 tentativas, as quais levaram cerca de
16 minutos para serem concluídas, sem
sucesso.

 – Ataque de força bruta
Fonte: os autores

Fonte: os autores.

Calcula-se, portanto, que para testar
todas as combinações possíveis para quebrar
um algoritmo AES-256, seriam necessários
1,65 x 10^59 anos.

Escalando a capacidade para um
computador que possa realizar, por exemplo,
20 milhões de tentativas por segundo, o tempo
médio cai para 1,835 x 10^51 anos, um número
ainda inviável.

Buscando conjugar elementos dos dois
principais tipos de criptografia, a ferramenta
desenvolvida trabalha com um modelo
híbrido.

Dessa forma, é possível a transmissão
de grandes quantidades de dados com
segurança e eficiência, já que a funcionalidade
simétrica garante boa velocidade na
transmissão e a assimétrica protege a chave
sem expô-la.

A obrigação de o usuário fornecer uma
senha implementa também a autenticação de
dois fatores, sendo um deles algo que o
usuário tem (chave) e o outro algo que ele sabe

(senha).

Embora a aplicação procure o melhor
resultado ao combinar os algoritmos de ambos
os tipos de criptografia, ainda é possível que a
comunicação fique exposta a alguns riscos.

Ainda que as chaves estejam
protegidas, a possível ausência de um canal de
transmissão seguro entre os usuários, pode
acarretar na interceptação das mesmas.

Se o usuário não inserir uma senha
forte durante sua execução, ataques de força
bruta podem ser suficientes para decodificá-la.
Bem como, ela pode ser obtida por meio de
técnicas de engenharia social.

Quanto ao seu funcionamento, apesar
da sua boa execução, o programa não
demonstra muita flexibilidade ao salvar todos
os arquivos gerados no mesmo diretório local
do executável. Futuras versões podem mitigar
essa restrição.

Os conhecimentos sobre a Segurança
da Informação e a Proteção Cibernética estão
sujeitos à constante revisão. Uma vez que a
tecnologia segue evoluindo e novas ameaças
são desenvolvidas, é crucial que o programa
seja continuamente testado e sofra as devidas
atualizações que se fizerem necessárias para
garantir a inviolabilidade dos dados por ele
protegidos.

Da mesma forma, é interessante que
além de atualizada, a ferramenta possa ser
integrada a outros sistemas utilizados pela
Força Terrestre, inclusive com acesso à EBNet
a fim de estabelecer um canal de comunicação
seguro entre as partes.

BONEH, Dan.
Notices of the American

Mathematical Society, v. 46, n. 2, 1999.

DAEMEN, Joan; RIJMEN, Vincent.

. Berlim: Springer-Verlag, 2001.

DIFFIE, Whitfield; LANDAU, Susan.

. Massachusetts: The MIT Press,
2007.

EXÉRCITO BRASILEIRO.
(MD31-M-07). Brasília,

2023.

EXÉRCITO BRASILEIRO.

(EB10-D-01.013). Brasília,
2021.

EXÉRCITO BRASILEIRO.
(EB70-MC-10.232). Brasília, 2017.

FERGUSON, Neil; SCHNEIER, Bruce; KOHNO,
Tadayoshi.

. New York:
Wiley, 2010.

INTERNET ENGINEERING TASK FORCE (IETF).
.

Disponível em
<https://www.ietf.org/rfc/rfc1321.txt> Acesso
em: 28 out. 2024.

HELLMAN, Martin E.
. IEEE Communications Magazine,

v. 16, n. 6, 1978.

KATZ, Jonathan; LINDELL, Yehuda.
. Boca Raton: CRC

Press, 2007.

MENEZES, Alfred J.; VAN OORSCHOT, Paul C.;
VANSTONE, Scott A.

Boca Raton: CRC Press, 1996.

NAKAMURA, Emílio Tissato. GEUS, Paulo Lício
de. Segurança de Redes em Ambientes
Corporativos. São Paulo: Novatec Editora,
2007.

PAAR, Christof; PELZL, Jan.

Berlim: Springer-Verlag, 2010

SCHNEIER, Bruce. . New
York: Wiley, 1996.

STALLINGS, William.
. São Paulo:

Editora Pearson, 2015.

TANENBAUM, Andrew S.
. São Paulo: Editora Pearson

Prentice Hall, 2011.

Brasília - DF, 8 de novembro de 2024.

Chefe da Seção de Ensino de TIC e Prot Ciber

A.1 OBJETIVO

A.1.1 Fornecer diretrizes para a confecção, configuração e operação de um programa de criptografia
de dados, incluindo instruções para o desenvolvimento e uso de um script de criptografia de
dados, bem como padronizar o processo de utilização dele, garantindo
a integridade, confidencialidade e disponibilidade das informações trocadas entre sistemas
e unidades militares. Esse procedimento visa proporcionar uma camada de
segurança adicional para prevenir acessos não autorizados e assegurar que as
comunicações sejam protegidas contra ameaças cibernéticas durante operações.

A.2 ÁREA OU SETOR RESPONSÁVEL

A.2.1 Departamento de Tecnologia da Informação (TI).

A.3 REFERÊNCIAS
A.3.1 Documentação oficial da biblioteca PyCryptodome
(https://pycryptodome.readthedocs.io/en/latest/src/api.html); e
A.3.2 Manual de Campanha EB70-MC-10.232 Guerra Cibernética, 1ª Edição, 2017.

A.4 MATERIAIS E EQUIPAMENTOS NECESSÁRIOS

A.4.1 Hardware compatível para servidor e estações de trabalho, com capacidade suficiente para
processar operações de criptografia.
A.4.2 Python e as bibliotecas PyCryptodome para criptografia e Tkinter para interface gráfica.
A.4.3 Acesso à internet para atualização de bibliotecas e consulta de documentação online, se
necessário.
A.4.4 Documentação técnica sobre criptografia, contendo especificações de segurança e manuais
de referência para configuração e operação segura.
A.4.6 Ferramentas de backup e recuperação de dados para garantir a integridade e a disponibilidade
das informações em caso de falha no sistema.

A.5 PROCEDIMENTOS PASSO A PASSO

A.5.1 INSTALAÇÃO

A.5.1.1 Preparação do Ambiente

: Para melhor visualização do código e por ocasião deste POP, será utilizado o editor de
código fonte Visual Studio Code (https://code.visualstudio.com/download)

Passo 1 da instalação do programa

Fonte: os autores.

Passo 2 da instalação do programa

Fonte: os autores.

Passo 3 da instalação do programa

Fonte: os autores.

Instalar o Python, que será a linguagem de programação utilizada para a confecção do
script de criptografia (https://www.python.org/downloads/)

Instalação do Python

Fonte: os autores

A.5.1.1.3 Instalação das bibliotecas de python necessárias para confecção do script:

FIGURA 5 – Instalação das bibliotecas

Fonte: os autores

A.5.2 CONFECÇÃO DO SCRIPT

A.5.2.1 Script de Criptografia Híbrida

A.5.2.1.1 Dentro do Visual Studio Code, crie um arquivo “ ” onde será inserido o script para
criptografia híbrida. O script completo será disponibilizado no final do pop:

FIGURA 6 – Trecho do script

Fonte: os autores

DESCRIÇÃO DO PASSO: Para instalar o Python, marque a opção "Use admin privileges when
installing py.exe" para garantir permissões administrativas e "Add python.exe to PATH" para
adicionar o Python ao PATH do sistema. Em seguida, clique em "Install Now" para iniciar a
instalação com as configurações padrão.
No Linux, a instalação do Python pode ser feita diretamente pelo terminal. Use os seguintes
comandos: sudo apt update && sudo apt install python3

DESCRIÇÃO DO PASSO: Abra o terminal e execute: no Windows,
 (o Tkinter já vem com o Python); no Linux, e

A.5.2.1.2 Funções de utilidade dentro no script de criptografia:

FIGURA 7 – Funções de utilidade

Fonte: os autores

DESCRIÇÃO DO PASSO: Primeiramente serão realizadas as importações de bibliotecas essenciais
para o funcionamento do script de criptografia. O tkinter fornece componentes de interface
gráfica, como botões e caixas de diálogo. A biblioteca Crypto (do pacote PyCryptodome) importa
módulos para geração e uso de chaves RSA, criptografia AES, geração de bytes aleatórios, e
criação de hashes e assinaturas digitais. base64 é usada para codificação de dados, os para
operações no sistema, e datetime para registros de data e hora em logs ou relatórios.

DESCRIÇÃO DO PASSO: Essas funções de utilidade ajudam no gerenciamento do script. A função
log_action registra as ações em um arquivo de log com data e hora; show_message exibe
mensagens de sucesso ou erro para o usuário e registra a ação; prompt_password solicita uma
senha ao usuário; e load_key carrega uma chave RSA (privada ou pública) do arquivo, pedindo
senha se necessário e verificando se o tipo de chave está correto, garantindo segurança e
usabilidade.

A.5.2.1.3 Função para gerar as chaves RSA:

FIGURA 8 – Função generate_rsa_keys()

Fonte: os autores

A.5.2.1.4 Função para criptografia:

FIGURA 9 – Função encrypt_file()

Fonte: os autores

DESCRIÇÃO DO PASSO: A função generate_rsa_keys cria um par de chaves RSA (privada e
pública). Primeiro, pede ao usuário um nome para as chaves e uma senha para proteger a chave
privada. A senha é confirmada para garantir precisão. As chaves são geradas com 4096 bits e
salvas em arquivos com nomes baseados na escolha do usuário. Em caso de sucesso ou erro,
uma mensagem é exibida ao usuário, informando o resultado da operação.

A.5.2.1.5 Função para descriptografia:

FIGURA 10 – Função decrypt_file()

Fonte: os autores

DESCRIÇÃO DO PASSO: A função encrypt_file criptografa um arquivo usando uma chave AES
gerada aleatoriamente e criptografa essa chave AES com a chave pública RSA. Ela também gera
uma assinatura digital com a chave privada RSA para garantir a integridade. O arquivo
criptografado é salvo com extensão .enc e inclui a chave AES criptografada, o texto cifrado, a tag
de autenticação, a assinatura e a extensão original do arquivo. Em caso de sucesso ou erro, uma
mensagem é exibida ao usuário com o status da operação.

DESCRIÇÃO DO PASSO: A função decrypt_file descriptografa um arquivo usando a chave privada
RSA para recuperar a chave AES e, em seguida, descriptografa o conteúdo do arquivo com AES.
Ela também verifica a assinatura digital com a chave pública para assegurar a integridade do
arquivo. Após a descriptografia, o usuário escolhe onde salvar o arquivo restaurado com sua
extensão original. Em caso de sucesso ou erro, uma mensagem informa o status da operação ao
usuário.

A.5.2.1.6 Funções para interface gráfica:

FIGURA 11 – Funções para interface gráfica

Fonte: os autores

A.5.2.1.7 Função para execução do programa:

FIGURA 12 – Função principal

Fonte: os autores

DESCRIÇÃO DO PASSO: Essas funções criam a interface gráfica para criptografia de arquivos.
encrypt_file_ui e decrypt_file_ui permitem que o usuário selecione as chaves e o arquivo para
criptografar ou descriptografar usando caixas de diálogo. A função create_gui configura a janela
principal com botões para gerar chaves RSA, criptografar e descriptografar arquivos, tornando o
processo acessível e fácil de usar.

DESCRIÇÃO DO PASSO: A condição if __name__ == "__main__": verifica se o script está sendo
executado diretamente. Se for o caso, a função create_gui() é chamada, iniciando a interface
gráfica do usuário para acessar as funcionalidades de criptografia e descriptografia de arquivos.

A.5.2.1.8 Importando o script em um executável:

FIGURA 13 – Passo 1 da importação do script

Fonte: os autores

FIGURA 12 - Passo 2 da importação do script

Fonte: os autores

DESCRIÇÃO DO PASSO: Para exportar o script como executável no Visual Studio Code, abra o
terminal integrado, navegue até o diretório do script e execute pyinstaller --onefile --windowed
nome_do_script.py no terminal. O executável será gerado na pasta dist dentro do diretório do
projeto, pronto para uso sem necessidade de um ambiente Python.
Nota: O executável gerado pelo PyInstaller funcionará apenas no sistema operacional onde o
comando foi executado. Para criar versões para Windows e Linux, é necessário rodar o comando
em cada sistema operacional.

OPERAÇÃO

Gerar as chaves públicas e privadas que irão servir para garantir a integridade e
autenticidade dos dados:

Seleção da opção “gerar chaves RSA” no programa

Fonte: os autores.

Passo a passo da geração de chaves

Fonte: os autores.

Este passo utiliza criptografia para proteger o arquivo selecionado com as chaves RSA;

Clique em " ", insira um nome para o par de chaves e
defina uma senha para proteger a chave privada, confirmando-a em seguida. As chaves serão
salvas na mesma pasta do programa com os nomes escolhidos (

).

Seleção da chave pública

Fonte: os autores.

Seleção da chave privada

Fonte: os autores.

Seleção do arquivo a ser cifrado

Fonte: os autores.

Digitação da senha e mensagem final

Fonte: os autores.

Este passo reverte a criptografia, restaurando o arquivo original.;

 – Seleção da chave privada

Fonte: os autores.

Para criptografar um arquivo, clique em “ ” e
selecione a chave pública do destinatário (). Em seguida, escolha sua chave
privada () e o arquivo que deseja criptografar. Insira a senha da chave privada
quando solicitado. Ao final, uma mensagem de sucesso confirmará que o arquivo foi
criptografado, e a versão criptografada será salva na mesma pasta do arquivo original, com a
extensão “ ”.

Seleção da chave pública

Fonte: os autores.

Seleção do arquivo a ser decifrado

Fonte: os autores.

Digitação da senha e mensagem final

Fonte: os autores.

Realizar testes de criptografia e descriptografia após a geração das chaves e configuração para
garantir que o programa está operando corretamente.

Verificar a integridade dos arquivos criptografados e descriptografados para assegurar que
não houve perda de dados durante o processo.

Realizar testes de compatibilidade das chaves RSA, assegurando que somente a chave privada
correspondente pode descriptografar os arquivos.

Testar a interface gráfica para garantir que todas as funcionalidades (geração de chaves,
criptografia, descriptografia) estão operando sem erros.

Manter registros de todas as etapas do processo de geração de chaves, criptografia e
descriptografia de arquivos e documentar qualquer problema encontrado durante o uso do
programa, como falhas na criptografia ou erros de autenticação.

Arquivo de log gerado

Fonte: os autores.

Conteúdo do arquivo de log

Para descriptografar um arquivo, clique em “ ” e
selecione sua chave privada () e a chave pública do remetente ().
Escolha o arquivo criptografado (tipo) e, em seguida, insira a senha da chave privada quando
solicitado. Defina o local e o nome para salvar o arquivo descriptografado e confirme. Uma
mensagem de sucesso indicará que o arquivo foi restaurado com sucesso no local escolhido.

Fonte: os autores.

O responsável pela TI é responsável por supervisionar a implementação do programa de
acordo com este POP; e

Os usuários finais são responsáveis por reportar quaisquer problemas ou necessidades de
suporte relacionadas ao uso do programa de criptografia híbrida.

Script do programa completo, em formato .py

O log do programa, criado automaticamente no arquivo security_log.txt
na mesma pasta onde o programa é executado, registra todas as ações realizadas, como geração
de chaves, operações de criptografia e descriptografia, além de eventuais falhas. Cada entrada
inclui a data, a ação executada, o status (sucesso ou falha) e, quando aplicável, o caminho do
arquivo envolvido.

