Operational application of Microwave Photonics

the Analog Photonic Link and the Spurious Free Dynamic Range

  • Bruno Elias Ribeiro
Keywords: Radiofrequency, Microwave Photonics, Analog Photonic Link

Abstract

The The first devices to deploy Microwave Photonics technologies date from the nineties. Since then, several improvements have been made in radiofrequency (RF) systems which use photonic devices, deployed along or replacing electronic devices. Photonic devices have been used in Analog Photonic Links (APL) seeking commercial civilian applications or applications that are interesting to the military. This way, one feature to be studied is the Spurious Free Dynamic Range (SFDR), which limits, for instance, sensibility and distortion-free operation of a radar or an electronic warfare system. This article also points at APLs advantages, since they provide higher efficiency to associated RF systems, once photonic devices are used there. It is foreseen that military systems deploying these devices will be commercially available in the near future, inside weapons systems and electronic warfare systems, given the requirements of battlefield scenarios and the evolutions predicted to microwave photonics technologies.

Downloads

Download data is not yet available.

References

BOGONI, Antonella. Phodir project: photonic based fully digital radar system. CNIT, TECIP, [2013?]. Disponível em: . Acesso em: 3 jun. 2018.

CAPMANY, J.; NOVAK, D. Microwave photonics combines two worlds. Nature Photonics, Nature Publishing Group, v. 1, p. 319–330, June 2007.

COUTINHO, O. L. RF em Fotônica e suas aplicações em defesa. Brazil Cyber Defence Summit & Expo – Conferência de Simulação e Tecnologia Militar. Proceedings... 2018. Brasília – DF.

COX III, C. H. Analog Optical Links: theory and practice. Nova York: Cambridge University Press, 2004. 288 p.

COX III, C. H. et al. Limits on the performance of RF-over-fiber links and their impact on device design. IEEE Transactions on Microwave Theory and Techniques, v. 54, n. 2, p. 906– 920, Feb. 2006.

DIAS, P. E. S. Estudo do Ruído de Fase na Geração Fotônica de Sinais de RF: modelagem e caracterização. 2017. 194 f. Dissertação (Mestrado em Microondas e Optoeletrônica) – Instituto Tecnológico de Aeronáutica, São José dos Campos, 2017.

GHELFI, P. et al. A fully photonics-based coherent radar system. Research Letter. Nature, v. 507, p. 341–345, Mar. 2014.

KEISER, G. Comunicações por fibras ópticas. Porto Alegre: AMGH Editora Ltda, 2014. 659 p.

MAIMAN, T. H. Stimulated Optical Radiation in Ruby. Nature, v. 187, p. 494, Aug. 1960.

MELO, S. et al. Dual-use System Combining Simultaneous Active Radar & Communication, Based on a Single Photonics-Assisted Transceiver. In:INTERNATIONAL RADIO SYMPOSIUM – IRS, 17., 2016. Proceedings...
[S.l.], 2016.

OLIVEIRA, J. E. B.; ALVES, F. D. P.; MATTEI, A. L. P. Trends in photonics applied to electronic warfare at Brazilian Air Force. In: SBMO/IEEE MTT-S IMOC MICROWAVE OPTOELETRONIC CONFERENCE, 2., 1999, Rio de Janeiro. Proceedings... Psicataway: IEEE, 1999, p. 599–602.

RIDGWAY, R. W. et al. Microwave photonics programs at DARPA. Journal of Lightwave Technology, v. 32, n. 20, p. 3428-3439, Oct. 2014.

SANTOS, L. B. Análise de Sistemas de Comunicação Utilizando Óptica no Espaço Livre. 2008. 133 f. Dissertação (Mestrado em Engenharia Elétrica) – Instituto Militar de Engenharia, Rio de Janeiro. Disponível em:. Acesso em: 31 jul. 2018.

SILVA, J. L. B. Filtros e linhas de retardo fotônicos integrados aplicados a sistemas de RF em Fotônica. 2017. 144 f. Dissertação (Mestrado em Ciências e Tecnologias Espaciais) – Instituto Tecnológico de Aeronáutica, São José dos Campos, 2017.

THAI Military and Asian Region - Zhuk-AE/FGA-35 modified radar with AESA (ROFAR). Disponível em: . Acesso em: 31 jul. 2018.

MARQUES, R. B. et al. Perspectivas de modernização em guerra eletrônica: aplicação militar da fotônica. Spectrum, v. 1, n. 20, p. 32–38, set. 2017.
Published
2020-12-07
How to Cite
Elias Ribeiro, B. (2020). Operational application of Microwave Photonics: the Analog Photonic Link and the Spurious Free Dynamic Range. Data & Hertz, 1(1 jan./Dez), 26-33. Retrieved from https://ebrevistas.eb.mil.br/datahertz/article/view/6791