
RESUMO: A computação em nuvem oferece diversos serviços, como
armazenamento de dados e máquinas virtuais (VMs). Esses recursos
são disponibilizados pela Internet e seu pagamento é dado pelo uso.
Embora os serviços de nuvem sejam eficientes, há uma preocupação
crescente na segurança e privacidade desses serviços prestados por
nuvens computacionais. Entre essas preocupações, pode-se destacar o
compartilhamento de dados entre usuários. Estes serviços não possuem
um mecanismo de permissão que seja auditável pelo proprietário dos
dados. Neste contexto, o blockchain tem se destacado principalmente por
sua arquitetura de ledgers distribuídos que permite uma trilha imutável
e auditável. Além disso, a arquitetura descentralizada do blockchain
elimina a necessidade de confiança em terceiros. Portanto, este artigo
apresenta uma arquitetura baseada no uso da tecnologia blockchain
como repositório seguro e auditável de registro dos acessos e permissões
concedidas aos usuários. Como resultado, este artigo apresenta um
estudo de caso validando a arquitetura proposta.

PALAVRAS-CHAVE: Computação em nuvem. Blockchain.
Compartilhamento de dados. Segurança. Privacidade.

ABSTRACT: Cloud computing offers a variety of services such as data
storage and virtual machines (VMs) . These features are made available
over the Internet and your payment is per use. While cloud services
are efficient, there is growing concern for the security and privacy of
these services provided by cloud computing. Among these concerns, the
sharing of data between users can be highlighted. These services do not
have a permit system that is auditable. In this context, the blockchain
has stood out mainly for its distributed ledger architecture that allows an
immutable and auditable trail. In addition, the blockchain’s decentralized
architecture eliminates the need to rely on third parties. Therefore, this
article presents an architecture based on the use of blockchain technology
as a secure and auditable repository for recording access and permissions
granted to users. As a result, this article presents a case study validating
the proposed architecture.

KEYWORDS: Cloud computing. Blockchain. Data sharing. Security.
Privacy. Data storage.

Use of blockchain in the control and
traceability of access to data stored in the cloud
Souza Jonatana, Pinto Raquelb, Bruno Schulzec

aInstituto Militar de Engenharia (IME), jonatangd.souza@gmail.com
bInstituto Militar de Engenharia (IME), raquel@ime.eb.br
cLaboratório Nacional de Computação Científica (LNCC), schulze@lncc.br

 RMCT • 83

VOL.39 Nº3 2022
https://doi.org/10.2271\IMECTA.10770.en

1. Introduction

Data sharing between users and services has
become increasingly common, especially
with the growing adoption of the Internet of

Things (IoT - Internet of Things). In IoT systems, several
smart devices interact with each other generating data
from different contexts. Considering the large amount of
data and the reduced storage capacity of personal devices,
the use of data storage services has been increasingly
common both by ordinary users and by large companies.

This storage migration takes place as the limitations
of hardware and infrastructure for communication are
mitigated. In this way, cloud services are often used. Among
the main advantages, we can highlight: its simplicity, low
financial cost and high availability of resources.

Cloud computing can be defined as a type of distributed
system, consisting of a set of interconnected and virtualized

computers. These resources are dynamically available as
unified computing resources, whose services are based
on service level agreements. [1] The cloud environment
is shared among several users where the demand for
hardware and software can be hired or sold at any time.
Therefore, the cloud must be able to grow elastically, as the
demand for these resources. [2]

Considering the aforementioned advantages, cloud
services are widely adopted in different contexts, but it
is necessary to consider that it is a third-party service for
data storage. Therefore, there is a need for the owner to
trust this service to allow or revoke access to third-party
users, and not just with regard to storage, since access
control and permissions are on the service side.

Therefore, there is a growing concern about the
security of these services provided by computing clouds:
I) the warranty that data is shared only with users

84 • RMCT

VOL.39 Nº3 2022
https://doi.org/10.2271\IMECTA.10770.en

authorized by the owner; II) services, in general, do not
have a permission mechanism that is auditable by the
data owner.

In this context, blockchain has gained attention
mainly for its distributed ledger architecture. The
blockchain consists of a chain of blocks linked together
using one or more hashes of the previous block, providing
an immutable and auditable trail.

This work presents a blockchain-based architecture
that provides a secure and auditable environment
for recording access and granted permissions, thus
transferring the need for trust in sharing data with
different users, to an environment where this data is
auditable and immutable. Therefore, the owner of the
data will be able to audit the permissions given and
revoked to their data, in addition to verifying when they
were accessed.

This article is organized as follows. Section II
introduces the current blockchain landscape and key
concepts. Section III addresses some of the major related
work. Section IV presents the proposed architecture in
detail. Section V addresses a case study of the architecture
in an IoT context. Finally, Section VI concludes the
article with some discussions and future directions.

2. Blockchain Fundamentals

This section presents a brief description of
important concepts and technologies adopted in this
research study, related to blockchain.

Blockchain is a decentralized data structure that is
replicated and shared among members of a network
called peers. Each block contains an ordered set
of transactions and a hash that are stamped with a
timestamp. Each block also includes the timestamp of
the previous block in its hash, forming a linked list
of blocks, with each additional timestamp reinforcing
the previous ones. [14]

The block data structure is composed of a header
and a list of transactions. The header contains
metadata about a block and the hash of the previous
block. For each block N, the hash of block N-1 is
considered. The configuration block that initializes

components and serves as the first block in a chain
is called the genesis block. Blocks are created by the
Ordering Service and validated by other network
elements.

Decentralization means that none of the peers
alone has the ability to control the processing of all
transactions on the network.

Blockchains are also architecturally decentralized
in that there is no central point of failure, but everyone
must agree on a single state through consensus.

The ledger or ledger contains the current state
of a business and works like a transaction journal.
The blockchain ledger basically has two attributions:
I) present the current value of a set of states; and
II) maintain the history of the transactions that
determined these states.

One of the main features of blockchain is the
immutability of stored data. This is due to the
recurrence of hashes, where previous blocks cannot
have their content violated and remain valid.
Therefore, transaction records are permanent,
considering that if changed, the entire subsequent
blockchain will be invalid.

Considering the decentralized architecture,
achieving consensus in this scenario is a challenge for
a blockchain network. Achieving consensus ensures
that all network nodes agree on a consistent global
state of the blockchain. This is important in blockchain
as it ensures that stored data cannot be tampered
with unless the attacker gains control of (50% + 1)
network nodes, since this is the amount that is needed
for validation in most implementations. Also, blocks
before the last one when modified its content, make
all the blocks in front of it invalid. This feature is
given by hash recurrence.

Since the blockchain has responsibility for the
distributed ledger and the entire immutable data
structure, the smart contract extends this function
by including a language for terms of agreement and
measurements ensuring that certain conditions are met.

In a minimalist way, smart contracts are scripts
that act on the blockchain and have a triggering
transaction that is responsible for executing actions.
[15] As they reside on the blockchain chain, they have

 RMCT • 85

VOL.39 Nº3 2022
https://doi.org/10.2271\IMECTA.10770.en

a unique address. When executing a transaction
that has a smart contract addressed, it executes
independently and automatically in a prescribed way
in all the nodes of the network, according to the data
that were included in the transaction triggering the
smart contract. [16] [17]

There are several blockchain platforms available for
implementing solutions. These platforms are basically
divided into two large groups: public blockchains and
private or permissioned blockchains. [18]

Public blockchains, being open, have more robust
and computationally more expensive consensus
algorithms. Normally, it is necessary to insert the
figure of the miner. Private blockchains are the
opposite as they are made up of known nodes. In this
way, they have simpler consensus algorithms, making
transactions faster and allowing architecture changes
in a shorter time.

3. Related Works

Cloud services, in general, offer practicality,
scalability of service use, high availability and resource
management. Although all these offered benefits are
relevant for the decision to migrate from a local solution
to a cloud service, some issues related to security
and integrity require permanent monitoring of this
information. In [3] the authors propose a software
architecture that allows the storage of files in cloud
services, with guaranteed information privacy, in
addition to permanent monitoring of the integrity of
the files, based on technologies such as blockchain. In
this work, the authors highlight two main obstacles to
the adoption of blockchain platforms, which are: high
energy consumption and low transaction processing
speed, in view of the excessive use of cryptography and
consensus algorithms among peers, thus justifying the
use of HyperLedger Fabric as a more efficient solution
for the proposed scenario.

In [4] an architecture based on blockchain, smart
contracts and computational trust technologies that is
capable of periodically monitoring the integrity of files

stored in the cloud is presented. Among the possible
applications for the proposed architecture, the authors
highlight the storage of database backups of electronic
document management systems. These are generally
large files and, due to legal issues, need to be stored for
long periods of time.

For the implementation of the blockchain, the
authors opted for the Ethereum platform, in view of
the availability of documentation, the ease of creating
a network to perform tests in a local environment, and
also the number of tools available to support the use and
execution of the test. The work also presents an analysis
of the security of the architecture.

The sharing of information stored in cloud services
has also raised concerns. Generally, cloud services
do not offer an auditable solution, thus requiring the
contractor’s trust in the third-party service. In [5], the
authors point out that dynamic group data sharing,
where users anonymously share their data with other
group members using the cloud service, can compromise
security. Therefore, they highlight the need to design an
efficient and secure system for sharing data in dynamic
groups. This paper presents a review of the challenges
encountered in efficiently designing dynamic group data
sharing. Among the challenges encountered, include user
authentication, privacy and security, data confidentiality,
integrity, and query cost. They also mention service
provider-based issues that include user identity and its
traceability, and user revocation.

Security, privacy and data integrity in cloud services
has motivated several researchers. In [6], It is highlighted
that public verification techniques may allow a user to
employ a third-party auditor to verify data integrity
on their behalf. However, existing public verification
schemes are vulnerable as they allow auditors to fail to
carry out checks in time. In this context, the authors
propose a mechanism for public verification of the
integrity of cloud storage of files resistant to auditors’
procrastination, without the use of certificates, bearing
in mind that this type of mechanism uses, for the most
part, public key infrastructure (PKI) and therefore suffer
from certificate management issues. The mechanism
called Certificateless Public Verification scheme against
Procrastinating Auditors (CPVPA), uses blockchain

86 • RMCT

VOL.39 Nº3 2022
https://doi.org/10.2271\IMECTA.10770.en

technology, and aims to require auditors to record each
verification performed in a transaction on the blockchain.
Since transactions on the blockchain are time sensitive,
strategically, the verification can be time stamped after
the transaction is recorded on the blockchain, which
allows users to verify that auditors have performed their
verifications in the prescribed time.

Due to the limited processing capacity of the devices
that normally make up an IoT network, devices often
use externally controlled third-party services to perform
additional required processing, such as a computational
cloud for example. IOT SMART CONTRACT [7], is a
proposed solution for the decentralized management
of data access using blockchain and the data privacy
protection offered by the Intel SGX. This solution aims
to establish trust between IoT service providers and the
users of these services. Through smart contracts, the
proposed platform provides data access management
where users have privileges to control how their data is
shared or used. Furthermore, it is possible to assign data
access rules that are applied autonomously by untrusted
third-party services on the blockchain network.

The security and privacy of the Internet of Things
(IoT) is an imminent challenge due to the massive scale
and distributed nature of IoT networks. Blockchain-
based approaches offer decentralized security and
privacy, but involve excessive power consumption
and increased latency, which can be an issue for most
resource-constrained IoT devices.

In [8], The security and privacy of the Internet
of Things (IoT) is an imminent challenge due to the
massive scale and distributed nature of IoT networks.
Blockchain-based approaches offer decentralized
security and privacy, but involve excessive power
consumption and increased latency, which can be an
issue for most resource-constrained IoT devices [9], The
use of blockchain for security and privacy in a smart
cities scenario is introduced.

IoT devices can suffer different types of attacks, mainly
public access ecosystems, such as smart meters. Smart
meters help energy utilities optimize their profitability
by reducing expenses associated with energy theft and
technical losses. Consumers, on the other hand, now
have access to real-time energy consumption data, which

they can use to increase their energy efficiency, reduce
their monthly bills and help the utility stabilize the grid
during peak periods. Preventing security threats such as
data falsification is a challenge. In [13] a solution using
the blockchain is presented to avoid security threats in
these ecosystems. In this work, the Zero-Knowledge
proof approach is still used, a blockchain anonymity
improvement technology that mitigates security threats,
such as breach of personal information. The work
also proposes the use of smart contracts to avoid data
tampering and increase the reliability of meters.

Observing the works listed in this section, it is
concluded that although all works use blockchain, most
use public blockchain. In this article we propose the
use of a private blockchain implemented through the
HyperLedger Fabric. This solution adds flexibility and
simplicity, as public blockchain solutions demand a
robust infrastructure with the addition of miners.

4. Architecture For Data Access
Control And Traceability

In view of the limitations of cloud services to provide
an auditable trail of data access, as well as transparency
in permissions and revocation of data access
permissions, the architecture illustrated by figure 1
presents a solution that meets these requirements.

Fig. 1 – Proposed architecture.

 RMCT • 87

VOL.39 Nº3 2022
https://doi.org/10.2271\IMECTA.10770.en

 In this architecture, owners create accounts, register
their assets stored in the cloud and register sharing with
third parties through the Interface Module. Users use
this module to register and access shared assets.

The Resource Access Module offers APIs used by the
Interface Module to access assets in the cloud and register
and validate operations performed on the blockchain.

The Blockchain Module, in turn, has a blockchain-
specific API and all the smart contracts needed to
validate and create transactions.

In the next subsections, these modules are described
in more detail.

4.1 Interface Module

Through the Interface Module, the owner creates
an account and registers the necessary credentials, so
that later access to the assets is possible in the place
where they are stored. With the account created, and
with the email and credentials verified, the owner of
the data can log in, and thus register the assets that he
wants to share with third parties. When registering an
asset, it must be validated in the Blockchain Module, in
order to verify if the asset already exists. In addition,
it must be validated by the Resource Access Module,
to verify the existence of data associated with the asset
in the cloud.

Fig. 2 – Interface Module and Resource Access Module

All registered data needs to be persisted on the
blockchain, but there is data that does not require an

auditable trail. For this reason, the interface module has
a database, which is used to register metadata, additional
information, among others.

	 After registering the assets, the owner can view
the list of registered assets, where it is possible to view
the history of operations on the asset, as well as grant
or revoke access to third parties. Third party users
receive an invitation to access the assets. After logging
in, a list of shared assets is presented. Thus, the user can
request access to assets shared with him. All operations
on assets are validated by the blockchain module, which
guarantees the recording of transactions, generating an
auditable access trail.

	 In this way, this module has the responsibility of
being the gateway for users. Figure 2 illustrates its main
components.

The Front-End is a web portal responsive to different
screen sizes, with an intuitive interface, where users
perform the operations proposed by the architecture.

 The Front-End is a SPA (Single Page Application).
This approach allows the development of a more robust
and decoupled application from the server.

The Back-End is a REST API able to meet the demands
of the Front-End and, in turn, have access to the resource
access module and connection to a database. This
database, ideally, is unstructured, document-oriented.
The choice of this approach is due to the flexibility of the
structure that, in addition to making scalability simpler,
facilitates insertion and access to data.

Access to the Back-End is only allowed to authorized
users via login, where they can only view data or actions
performed by them. As an example, a user authorized
through login would not be authorized to access details
of an asset that does not belong to him, even knowing the
identifier of this asset. The only time this type of access
is allowed is when the user is on the authorized list. In
this context, the information provided about this asset
is limited, preserving sensitive information, such as the
bucket or cloud service used, for example.

The Back-End must be able to store information
about the user, as well as name, email, asset metadata,
password hash and information about the cloud provider.
In addition, he must be able to access the Resource Access
Module via a secret key. Therefore, only the Back-End of

88 • RMCT

VOL.39 Nº3 2022
https://doi.org/10.2271\IMECTA.10770.en

the interface module is able to access the resource access
module.

By providing the registered credentials, it is possible
to map the resources and make them available as
assets. When the assets are registered, the Back-End
sends a transaction to the blockchain informing the
new resource that must be persisted. Once registered,
this asset is available to be shared with other users. All
requests regarding access to assets are also persisted in
the blockchain, through a Back-End request.

4.2 Resource access module

The Resource Access Module has two main
objectives: I) Accessing external resources, as the
module must be able to access resources in the cloud
for availability; and II) Submitting transactions to the
blockchain module. Figure 2 illustrates the details of
the resource access module.

For security reasons, the resource access module
must only be accessed through the Back-End of the
interface module, being in a private network.

Cloud Access is responsible for integrating cloud
providers and abstracting the differences into a
common interface. The module enables access to data
in a bucket, as well as making it available for access by
authorized third parties.

The cloud resources are strategically decoupled
from the rest of the solution, bearing in mind that a
future change of cloud provider or even a local storage
solution would have a small and one-off impact on
adapting the solution.

Access to the blockchain is responsible for
dispatching all requests that must be validated by
the blockchain, and works as a second authenticator,
where resources are made available only when Access
to the blockchain receives positive feedback from the
transaction. Otherwise, the initial request will receive
the status of unauthorized.

Therefore, Access to the blockchain performs an
encapsulation where the HTTP request is prepared
in the format expected by the Blockchain Module,
being also capable of interpreting the return of the

Blockchain Module, and reporting the responses of
the peers to the requesting user.

4.3 Blockchain Module

In the proposed architecture, a private blockchain
network is used to store all transactions carried
out with data stored in the cloud. The choice of
using blockchain instead of a distributed database
has two main motivations: I) Given its construction
nature in subsequent blocks, where its cryptographic
content has a hash that points to the next block, the
data becomes immutable , invalidating the string if
a previous record is changed; and II) Blockchains
are decentralized, this characteristic added to the
consensus mechanisms, guarantee a high level of
security for the solution, since the attacker would
need to have in his control the majority (50% + 1) of
the network nodes in his control.

The decision to use a private blockchain network
is based on the nature of the solution. Both private
and public blockchain networks are decentralized
solutions, have a consensus mechanism and provide
high security for information and transactions.
[18] However, in the public blockchain, any entity
can participate in the network, while in the private
blockchain, there are mechanisms that control the
entry of new nodes in the network. In addition, in
the public blockchain network, there is an incentive
for users who contribute to validations, called
cryptocurrency. These users are called miners, as
the process of working to encrypt data in exchange
for small fractions of cryptocurrencies is called the
mining process. In private blockchains there is no
such incentive, since the network is usually created for
a specific purpose. Finally, as the number of nodes
on the private blockchain is smaller, transactions
take less time to register as the consensus algorithm
converges faster. Unlike public chains, with thousands
of participants.

Considering that a private blockchain network
does not allow direct access to its peers, it is
necessary to create a module that encapsulates the
blockchain functionalities and makes them available

 RMCT • 89

VOL.39 Nº3 2022
https://doi.org/10.2271\IMECTA.10770.en

for applications to use. The Blockchain Module is
responsible for making these functionalities available
in a secure way, so that other services can access
the resources provided by the Blockchain, figure 3
illustrates its operation.

Fig. 3 – Blockchain Module

In order to have an auditable trail, every
interaction from the outside world with the blockchain
is considered a transaction. Therefore, the module
receives all transactions via HTTP, validates the
integrity of the information and then the transaction
proposal is built.

Each peer has a copy of the smart contracts
responsible for ensuring the correct validation of
each transaction. In the context of the proposed
architecture, the following smart contracts must be
implemented:

•	 Query asset: this transaction performs the
reading of an asset based on its identifier;

•	 Register asset: this transaction creates an asset
in the ledger, with the necessary data for access
permission and revocation;

•	 Grant access to asset: transaction in which the
owner grants access to a third party;

•	 Revoke access to asset: transaction in which the
owner revokes access to a third party;

•	 Query by owner: this transaction returns all
assets from the requesting owner;

•	 Request access permission to asset: this
transaction is responsible for granting or revoking
access to an asset, having a third party as the
requester; and

•	 Query asset history: this transaction returns
the auditable trail of all operations performed
on an asset;

All mentioned transactions carry out the following
validations: I) if the identifier of the requested asset
exists in the ledger; and II) if the requester can
perform the requested operation. For the permission
request, a new update is generated in the asset,
recording the requested access details.

When registering the user in the system, the
Back-End Module activates the Blockchain Module,
which, in turn, is responsible for creating the user and
generating all the cryptographic material necessary
for this user to have access permission to the data.
. At this time, all users are created with the same
profile, being able to submit new transactions to
the blockchain. However, the user can only submit
transactions referring to assets that they own.
Therefore, any user is allowed to register new assets, as
well as submit transactions to change them. Through
the validation of smart contracts, a user when trying
to submit a transaction related to a third-party asset,
this transaction will have the status of failure, and a
record of this attempt will be available in the auditable
trail provided by the blockchain.

Endorsing peers receive transaction proposal
inputs as arguments to invoke the smart contract.
Each peer appends a block to the channel chain, and
for each valid transaction, write sets are committed
to the current state database. An event is emitted
by each peer to notify the client application that the
transaction has been immutably attached to the chain,
as well as a notification whether the transaction has
committed or invalidated.

90 • RMCT

VOL.39 Nº3 2022
https://doi.org/10.2271\IMECTA.10770.en

Having the appropriate responses, the Blockchain
Module returns the response to the requesting
application. This flow allows all accesses to be
transformed into transactions, forming the immutable
trail for future audits.

4. Study Case
PTo apply the solution, a case study was developed

in an IoT context, where the owner of the data
generated by the devices is interested in sharing them
with other users and services. However, access to this
data must be controlled and the system in question
must provide an auditable trail of users who have
accessed the data.

For implementation, a responsive web application
was created, providing an intuitive solution for
users. This web application accesses an API called
Gateway Service API, responsible for accessing the
blockchain infrastructure and cloud infrastructure.
An environment configured with Hyper Ledger
Fabric was also available, where smart contracts were
implemented. To make smart contract functionalities
available outside the HyperLedger context, the smart
contract service API was created. This API is accessed
only by the Gateway Service API, figure 4 illustrates
how the implementation is organized.

The Gateway Service API was integrated with the
cloud provider Google Cloud, through the provision
of credentials. The directories with the data you want
to share are registered as assets in the blockchain API.
Once this registration procedure has been carried
out, the owner can share his assets with other users.

Fig. 4 - Implementation of case study

The user who will receive authorization to access
the shared data receives an invitation via email to
register on the platform. Once registered through
the web dashboard, the user sees the list of assets that
have been shared with him. Still through the web
dashboard, the user requests access to the desired
asset. At that point, the Gateway Service API submits
a transaction to the blockchain API. The transaction
is validated by the peers and entered into the ledger.
Once the return of the transaction is validated, the
Gateway Service API accesses the cloud provider
Google Cloud, obtains the data related to the asset
and provides a page for download. In the next
subsections the implementation components are
described in more detail.

 RMCT • 91

VOL.39 Nº3 2022
https://doi.org/10.2271\IMECTA.10770.en

Bearing in mind that blockchain operations are
slower, especially when the number of peers increases,
it is not good practice to use this structure to store all
data related to the operation of applications. For this
reason, it is common for solutions to use conventional
databases to support the blockchain for less critical
operations or operations that do not require the
features provided by the blockchain.

Therefore, the API gateway, in addition to the
blockchain structure for storage, also relies on
MongoDB, which is a non-relational database, in
SQL and document-oriented. The decision to use a
document-oriented database is due to the versatility
that this structure allows, considering that the solution
may require the addition of new properties not only in
the metadata, but also in the addition of new collections
of documents. The purpose of this database is to store
data that you are not interested in being auditable or
creating an immutable trail. Therefore, the login data
of each user is stored in MongoDB, in addition to the
metadata of users or assets.

5.3 Smart Contract Service API

Among private blockchain platforms, Hyperledger
Fabric [19] features a blockchain architecture that
provides flexibility, scalability, and confidentiality.
Another feature of Fabric is that its architecture
segregates the flow of transactions into three stages,
whose executions can be carried out by different entities:
execution of the transaction and verification of its
correctness, ordering of transactions using a consensus
algorithm and validation of transactions from the
network consensus. [20] In this way, HyperLedger Fabric
was used as a blockchain implementation.

The Smart Contract Service API implements the
Blockchain Module. The blockchain infrastructure
created in the context of this work is private, and
moreover, it is not able to communicate through the
HTTP protocol. Therefore, it is necessary to create a
REST API responsible for providing the functionalities
of smart contracts. The Smart Contract Service API
is a REST API responsible for making blockchain
transactions available via the HTTP protocol.

5.1 Web Dashboard

The Web Dashboard implements the architecture’s
Interface Module. It is responsive, allowing its usability
on any device that has a browser, regardless of screen
size. The dashboard was developed using the Angular
Framework, which allows the creation of Single Page
Applications (SPA). For styling and usability, the Ionic
Framework was used, which is a framework made up
of a series of mobile-first components, which allow
the creation of pages with an approach similar to that
used in native mobile applications.

The Web Dashboard offers functionality to users,
and has two profiles: data owners and guest users.

For owners, it is possible to register devices in the
form of assets. The assets are available in a list, where
you can access the details of the selected asset. On the
detail page, the data owner is able to grant or revoke
access to a third party, edit information and access the
history of performed operations. These operations
include: any attempt to gain access by the owner or a
third party, edits to information or permissions. This
auditable trail is available in the form of a timeline
containing the date and time the operation took place.

Users who received the share, only view the assets
that were shared, not being able to perform any editing
operations. When selecting an asset, the user receives
the OTP (One Time Password), and thus is able to
download the content. It is important to emphasize
that each access is unique, and when performed, it
generates a new transaction on the blockchain, thus
creating an auditable trail of the accesses granted.

5.2 Gateway Service API

The Resource Access Module was implemented
through the Gateway Service API. This API provides
access over the internet to the cloud service, where
IoT System data is stored, and to the blockchain. The
API has three main responsibilities: I) Establishing the
connection with the smart contract service API; II)
Make available the data stored in the cloud provider;
and III) Expose login-protected end-points to accept
HTTP requests and perform corresponding operations.

92 • RMCT

VOL.39 Nº3 2022
https://doi.org/10.2271\IMECTA.10770.en

Through the HyperLedger Fabric SDK, one of
the available APIs is used to generate a transaction
proposal. The proposal is a request that will trigger
a smart contract with the input parameters, with the
intention of reading and/or updating the ledger.

The HyperLedger SDK, in this context, works as
a wrapper to package the transaction proposal in
the right format and architecture (buffer protocol
over gRPC) and also deliver the user’s cryptographic
credentials to produce a unique signature for this
transaction proposal.

Although the API makes blockchain functionalities
available, for security reasons it must be in a private
network, thus not allowing external access, only
allowing the API gateway to be authorized to consume
the resources.

The API was developed with NodeJS, using the
ExpressJS Routing Framework, and uses HTTP
verbs to perform operations on the blockchain. This
integration is performed through the SDK provided
by the HyperLedger Fabric framework.

5.3 Experiments Performed

After populating the system with users and assets,
some experiments were carried out to demonstrate
the correct functioning of the implementation.

In the first experiment, a user gave access to his
assets to third-party users. These users then verified
the addition of these assets to the list of assets shared
with them and were able to access the corresponding
data on Google Cloud. Later, the owning user
revoked access to an asset to a third party user. This
third party is no longer able to access the resource,
given that none of the peers validates this access
request transaction. The API returns the request as
403 Forbidden, even before establishing a connection
with the cloud provider. This HTTP 403 Forbidden
error status response code indicates that the server
understood the request but refuses to authorize it.

The user who owns an asset can view all operations
performed on the asset through an auditable trail
stored on the blockchain.

The second experiment aimed to demonstrate the
resilience of the implementation. The MongoDB bank,
responsible for authenticating the application used by
users, was corrupted, and no data in the context of the
blockchain was changed. Therefore, after restoring
the authentication service and MongoDB, each user
must register again in the system with the same
login and password. Then, the application returns
to its previous state, showing the asset data, as well
as their respective histories that are restored from
the blockchain. This demonstrates that the solution
is robust, considering that the data persisted in the
blockchain is resilient because it is a distributed and
not centralized environment.

6. Conclusion
In this article, an architecture was proposed that

controls access to data stored through third-party
services, offering traceability of these accesses to
data owners. The architecture proposes the use of
blockchain to record information about the accesses
performed, in view of its immutability characteristic.

The case study allowed putting the proposed
architecture into practice in a scenario with
real integration with a Cloud provider and a
blockchain structure. The implementation allowed
demonstrating, in a simplified way, how users are
able to register their assets, allow or revoke access.
In addition, the user is allowed to access the history
of operations performed on the assets he owns,
demonstrating the proposed auditability.

Furthermore, the implementation also
demonstrated the architecture’s fault tolerance and
recoverability.

Finally, the literature review revealed that
most of the available works use Ethereum as an
implementation of public blockchain networks. This
choice is due to the amount of material available
for development, when compared to HyperLedger
Fabric, whose version 2.0 is recent. However, the use
of public blockchain involves additional costs, due
to the insertion of the figure of the miner, resulting
in several challenges and limitations. On the other

 RMCT • 93

VOL.39 Nº3 2022
https://doi.org/10.2271\IMECTA.10770.en

hand, the HyperLedger Fabric allows the creation of blockchains according to the availability of hardware,
since the network administrator controls the peers that make up the blockchain network.

As an additional result, this work demonstrates that the use of Hyper Ledger Fabric is an interesting alternative,
as in addition to allowing the use of a fully known network, it also provides data security and network resilience. With
this, the use of this type of approach can be encouraged to further assist researchers and developers in the field of
distributed and cloud computing, with the aim of mitigating the access of attackers to systems through the network,
in view of the difficulty introduced by the blockchain to carry out invasions.

References
[1] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation computer
systems, 25(6), 599-616.

[2] Bachiega, N. G. (2014). Algoritmo de escalonamento de instância de máquina virtual na computação em
nuvem.

[3] Pinheiro, A., Canedo, E. D., Albuquerque, R. D. O., & de Sousa Júnior, R. T. (2021). Validation of Architec-
ture Effectiveness for the Continuous Monitoring of File Integrity Stored in the Cloud Using Blockchain and
Smart Contracts. Sensors, 21(13), 4440.

[4] Pinheiro, A., Canedo, E. D., De Sousa, R. T., & Albuquerque, R. D. O. (2020). Monitoring File Integrity
Using Blockchain and Smart Contracts. IEEE Access, 8, 198548-198579.

[5] Kotha, S. K., Rani, M. S., Subedi, B., Chunduru, A., Karrothu, A., Neupane, B., & Sathishkumar, V. E.
(2021). A comprehensive review on secure data sharing in cloud environment. Wireless Personal Communi-
cations, 1-28.

[6] Zhang, Y., Xu, C., Lin, X., & Shen, X. S. (2019). Blockchain-based public integrity verification for cloud
storage against procrastinating auditors. IEEE Transactions on Cloud Computing.

[7] Ayoade, G., Karande, V., Khan, L., & Hamlen, K. (2018, July). Decentralized IoT data management using
blockchain and trusted execution environment. In 2018 IEEE International Conference on Information Reu-
se and Integration (IRI) (pp. 15-22). IEEE.

[8] Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K., & Njilla, L. (2017, May). Provchain: A blockchain-
-based data provenance architecture in cloud environment with enhanced privacy and availability. In 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID) (pp. 468-477). IEEE.

[9] Biswas, K., & Muthukkumarasamy, V. (2016, December). Securing smart cities using blockchain technolo-
gy. In 2016 IEEE 18th international conference on high performance computing and communications; IEEE
14th international conference on smart city; IEEE 2nd international conference on data science and systems
(HPCC/SmartCity/DSS) (pp. 1392-1393). IEEE.

[10] Dorri, A., Kanhere, S. S., & Jurdak, R. (2016). Blockchain in internet of things: challenges and solutions.
arXiv preprint arXiv:1608.05187.

[11] Dorri, A., Kanhere, S. S., Jurdak, R., & Gauravaram, P. (2017, March). Blockchain for IoT security and
privacy: The case study of a smart home. In 2017 IEEE international conference on pervasive computing and
communications workshops (PerCom workshops) (pp. 618-623). IEEE.

[12] Huh, S., Cho, S., & Kim, S. (2017, February). Managing IoT devices using blockchain platform. In 2017
19th international conference on advanced communication technology (ICACT) (pp. 464-467). IEEE.

94 • RMCT

VOL.39 Nº3 2022
https://doi.org/10.2271\IMECTA.10770.en

[13] Lee, C. H., & Kim, K. H. (2018, January). Implementation of IoT system using block chain with authen-
tication and data protection. In 2018 International Conference on Information Networking (ICOIN) (pp.
936-940).

[14] IEEE.Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review,
21260.

[15] Cong, L. W., & He, Z. (2019). Blockchain disruption and smart contracts. The Review of Financial Studies,
32(5), 1754-1797.

[16] Christidis, K., & Devetsikiotis, M. (2016). Blockchains and smart contracts for the internet of things. Ieee
Access, 4, 2292-2303.

[17] Alharby, M., & Van Moorsel, A. (2017). Blockchain-based smart contracts: A systematic mapping study.
arXiv preprint arXiv:1710.06372.

[18] Wüst, K., & Gervais, A. (2018, June). Do you need a blockchain?. In 2018 Crypto Valley Conference on
Blockchain Technology (CVCBT) (pp. 45-54). IEEE.

[19] Sajana, P., Sindhu, M., & Sethumadhavan, M. (2018). On blockchain applications: HyperLedger fabric
and ethereum. International Journal of Pure and Applied Mathematics, 118(18), 2965-2970.

[20] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., ... & Yellick, J. (2018,
April). HyperLedger fabric: a distributed operating system for permissioned blockchains. In Proceedings of
the thirteenth EuroSys conference (pp. 1-15).

