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Resumo: [nvestiga-se neste trabalho o emprego de uma abordagem
de mdxima verossimilhanca (ML, de “maximum likelihood”)
combinada com um mimero reduzido de conformagoes de feixe fixas
para realizar a estimagao do azimute de um alvo num sistema radar
de wvigilancia munido de arranjo de sensores. Sao apresentados
resultados de simulagao para avaliagio de desempenho do estimador
com base em apenas duas conformagies. E posstvel verificar que hd
grande vantagem do estimador ML em comparagio com um estimador
monopulso amplamente utilizado que se vale da mesma quantidade de
conformagoes. Resultados adicionais mostram que ganhos maiores de
desempenho podem ser obtidos com a abordagem ML aqui investigada
utilizando apenas wma conformagao de feixe a mas.

Palavras-chave: Radar. Estimagdo de Azimute. Arranjo de Antenas.
Conformagao de Feixe. Mdxima Verossimilhanga.

1. Introducao

emprego de arranjo de antenas e pro-

cessamento digital de sinais em siste-

mas radar é um importante recurso
de uso corrente, permitindo, entre outras operagoes,
a filtragem espacial de sinais [1-2]. Uma questdo im-
portante neste contexto é a estimagao de azimute do
alvo em relagido ao referencial radar, havendo varias
propostas na literatura com este objetivo [3-4].

O presente artigo tem como foco a estimacao de
azimute em radares de busca e vigilancia [5] que utili-
zam um arranjo linear de antenas.

Os radares de busca e vigilancia de maneira geral
se caracterizam por seguir uma rotina de processa-
mento num amplo volume do espago em que:

* a cada intervalo de tempo a direcao de referén-
cia de apontamento da antena é deslocada para o

24 « RMCT

Abstract: This work investigales the combination of the Maximum
Likelihood (ML) approach with a reduced number of fixed beam
steerings in order lo estimate targel azimuth in a surveillance radar-
based system equipped with sensor array. Simulation-based performance
results of the estimator using only two fixed beams arve presented. It is
verified that there is a great advantage of the ML solution compared to
an usual monopulse estimator, which employs the same number of beams.
Additional results show that greater performance gains can be obtained
with the investigated ML approach using only one additional beam.

Keywords: Radar. Azimuth Estimation. Antenna Array. Beamforming.
Maximum Likelihood.

centro de um setor, visando detectar a presenga
de um alvo e, em caso de detec¢ao, estimar a sua
posigao;

* em seguida, a direcao de referéncia de aponta-
mento da antena é deslocada para o centro de
um setor vizinho, buscando cobrir progressiva-
mente toda a regido de interesse.

Esta rotina basica é seguida tanto por radares pri-
marios quanto secundarios. A diferenga, para o pro-
blema aqui tratado, é a origem do sinal recebido [5].
No primeiro caso, o sinal resulta de um eco produzi-
do pela presenga de um alvo na direcao de referén-
cia de apontamento, em resposta a uma transmissao
prévia feita pelo radar primario. Ja no segundo caso,
o sinal é recebido de uma transmissao feita por um
transmissor cooperativo ({ransponder).

Em ambas as aplicagoes, é de grande interesse
que o estimador de azimute tenha precisao elevada




num intervalo angular o mais largo possivel em tor-
no da direcao de referéncia de apontamento do ra-
dar [6-7]. Isto possibilita a redugao do tempo total de
cobertura da regiao de interesse, aumentando assim
a taxa de atualizagdo de informacdo de posig¢ao do
alvo [8]. A habilidade de estimar satisfatoriamente
azimutes em torno da direg¢ao de referéncia de apon-
tamento serd aqui denominada abrangéncia do esti-
mador de azimute.

Outro requisito desejavel para um estimador de
azimute em radares de busca e vigilancia é a redu-
zida complexidade computacional, devido a necessi-
dade de repeti¢ao de sua operagio a intervalos cur-
tos de tempo.

Um exemplo bem conhecido de um estimador de
azimute de baixa complexidade computacional é o
das técnicas monopulso [5], originalmente implemen-
tadas usando duas antenas de recep¢ao com respostas
angulares distintas. Nessas técnicas, a estimativa de
azimute é obtida com base numa aproximagao linear
da razao entre a diferenga e a soma dos sinais prove-
nientes das antenas acima mencionadas, denominada
razdo monopulso.

Em se tratando de um estimador de azimute ba-
seado em arranjo linear de antenas, uma alternativa
para reduzir sua complexidade ¢ utilizar um ndmero
limitado de conformagoes de feixe fixas, obtidas por
combinagbes lineares adequadas dos sinais recebidos
no arranjo. Na literatura de processamento de sinais
em radar podem ser encontrados outros usos de con-
formacoes de feixe fixas, tais como em [9-12].

Duas conformacgoes de feixe fixas sdo suficientes
para a implementagao de um estimador do tipo mo-
nopulso com arranjo linear de antenas, produzindo
solugdes de complexidade muito baixa. As técnicas
monopulso, contudo, se caracterizam por produzir
estimacao satisfatéria apenas se o alvo estiver numa
regido pequena, préximo a direcao de referéncia de
apontamento da antena [5,7,13]. Ou seja, sao técnicas
de pequena abrangéncia.

Cabe notar que a possibilidade de deteccao de
um alvo localizado fora dessa regiao é baixa, mas nao

pode ser desconsiderada. Em casos assim, a aplica-
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¢do de uma técnica monopulso gera erros elevados
de estimacao [14]. Esses erros podem ser corrigidos
em outras etapas de processamento de um receptor
radar, mas a busca de alternativas para evita-los ou
reduzi-los ainda é de interesse [13].

Este artigo se propde a desenvolver e avaliar um
estimador de maior abrangéncia através da técnica de
maxima verossimilhanca (ML, de maximum likelihood
[15]) utilizando um ntmero reduzido de conforma-
¢oes de feixe fixas.

Apresenta-se inicialmente a deducao de um estima-
dor ML baseado em multiplas conformagoes de feixe
que lida com dois outros parametros desconhecidos,
além do azimute. Em seguida, o trabalho se concen-
tra na estimagao de azimute, em condigdes iguais ou
préximas das usualmente admitidas para emprego de
técnicas monopulso.

A implementacao dos estimadores ML considera-
dos neste trabalho requer uma técnica de otimizagao
numérica para encontrar o valor do argumento que
maximiza a funcao objetivo. Optou-se pelo uso de
um algoritmo PSO (particle swarm optimization) [16-18]
para este fim.

Mostra-se, através de resultados de simulacao, que
a abordagem ML em um conjunto pequeno de con-
formagoes de feixe fixas permite a obtengdo de au-
mentos significativos na abrangéncia de estimagiao em
relagdo a uma técnica monopulso tipica.

O artigo esta organizado em seis se¢oes. Na se¢ao
IT é apresentado o modelo do sistema adotado. Na se-
¢ao III é apresentada a estratégia de estimacao inves-
tigada, na se¢ao IV se apresenta o equacionamento da
técnica monopulso usada como referéncia, e na secao
V sdo apresentados os resultados de avaliacao de de-
sempenho. Por fim, a se¢io VI contém as principais
conclusoes do trabalho.

2. Modelo de sistema

Considera-se neste trabalho o emprego de um ar-
ranjo composto de N _elementos de antena, omnidi-
recionais, espacados entre si de uma distancia fixa d
ao longo de uma estrutura linear. Uma ilustragao des-
te tipo de arranjo é mostrada na Figura 1.
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Fig. 1 - Modelo do arranjo de antena.

Admite-se a reflexdo passiva pelo alvo do sinal en-
viado por um radar primario ou a transmissao por
um transmissor cooperativo com recep¢ao do sinal
por um radar secundario. Para ambas as situacoes,
considera-se que a frente de onda proveniente do
alvo incide sobre o radar fazendo um angulo 6 com
a dire¢ao normal ao arranjo linear, conforme mostra
a Fig. 1.

Considerando um cenario com radar primario, a
envoltéria complexa do sinal transmitido é dada por

5(6)=,(0)p(1), te[ON,T], ()
em que
p(t)=ip(t—mT), (2)

sendo N, o nimero de pulsos em sequéncia, T o inter-
valo de tempo entre pulsos, p(f) o formato de pulso
bésico transmitido e ¢, (#) uma amplitude complexa
cujo médulo é relacionado a poténcia de transmissao
na direcio 6.

O equivalente em banda basica do sinal recebido
pelo k-ésimo sensor do arranjo pode ser expresso
como [11]

% (1)=a,(0) p(t—r—%sen@)e

+z, (t) s
com ke{0,-,N,~1}. Os termos f. e 4 deno-
tam, respectivamente, a frequéncia e o comprimento

—j27z(fcr+k%senﬂj

(3)

de onda da portadora, ¢ é a velocidade daluze 7 éo
atraso em relacio ao instante de transmissao.

A amplitude de @,(0) depende da poténcia vin-
da do alvo (por transmissao prépria ou reflexao, em
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funcao do tipo de radar) e do ganho do diagrama de
recep¢io em 6. E admitido que ,(0) é desconheci-
do, porém de natureza nao aleatdria.

Por sua vez, o termo Z; (t) representa o ruido
térmico gerado pelo k-ésimo sensor, sendo modela-
do como um processo complexo gaussiano, de mé-
dia nula e densidade espectral de poténcia constan-
te numa faixa de frequéncias muito maior do que a
ocupada pelo sinal de interesse. A Equagao (3) ignora
um eventual deslocamento Doppler da frequéncia do
sinal, porém essa suposi¢do € razoavel para muitas
aplicagoes [19].

Supoe-se! que N,d /¢ <7 eredefine-se a ampli-
tude complexa com incorporacao de fatores de defa-
sagem que independem da posi¢ido do sensor. Assim,
a expressao (3) é reescrita como

—j2/r(k—N“ _ljgsenﬁ
2 )A

X, (t)zap(t—r)e

—j/z'(ZfL,r+(Na —l)gsenaj
sendo a =a, (0)e A
E importante observar que o fator & depende de 6
e 7. Entretanto, no problema aqui definido, esta de-
pendéncia sera desconsiderada, tal como em [19,20].
Reescrevendo (4) em notagdo vetorial, tem-se

x(t)=ap(t-r)a(v)+z(1), )

N,-1

em que x(t) = [xk (t)]kN:;I € z(t) - I:Zk (t)]k:o sao
vetores-coluna de dimensio NV, X1 e a(y )‘ é o vetor-

-diretor dado por

a (l//) =le e , (6)
sendo
W= ZH%sena (7)

1 Suposicao valida porque a distancia do radar ao alvo é

usualmente muito maior que N d.



com 96[—72'/2,72’/2]_

Aos sinais gerados na saida dos sensores é aplica-
do um conjunto de N . conformacoes fixas de feixes,
conforme mostra a Figura 2, que ilustra a sequéncia
das principais operagdes realizadas no receptor.

Os sinais gerados pelas conformagbes sao dados por

y(t)=W"x(t)y(t)=W"x(1) (8)
=ap(t-1)g(y)+v(1), )

em que
gw)=m"a(y), (10)
v(1)=w"z(1) ()

e W é a matriz de conformacio fixa com dimensio
N,xN.. Cada coluna dessa matriz corresponde ao
vetor normalizado de conformacio de feixe em uma
dada diregao 0. e [—” 12,7/ 2] , definido como

1
w, def a(v.),

a

(12)

com Celgla""Nc}, a(.) definido na Equacao (6) e
v, = ﬂzsenﬁs.

Fig. 2 - Diagrama de blocos do receptor.

i Estimacao de
Arranjo de Antenas Ao
S
x(t) ,
A\ 4
Conformagdes Fixas
de Feixes Amostragem

) L jy(r) p()

C%nvém observar que se W for unitdria, i.e.,
WW™ =1 o vetor de ruido V(t ) tem matriz covari-

. H 2
ancia E[v(t)v (t)] =01 . Em[15], é demonstrado
que essa condigio ¢ alcangada se 0, =6, =2kz/N,,
Ve,c,€{0,...,N. -1} e keZ.

Conforme mostrado na Figura 2, os sinais resul-

Filtros Casados

tantes das conformacgoes de feixe passam por filtros
casados e sio amostrados, dando origem a entrada
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do estimador de azimute. Considera-se os instantes
de amostragem dados por

=ty +(I-D)T,+(m-1)T, (13)
parame {1,---,Np} e le{l,...,L}, sendo L a quanti-
dade de amostras sucessivas por pulso e 7’ o intervalo
de tempo entre amostras.
Admite-se que o pulso na saida do filtro casado
tem energia significativa no intervalo de T’ segundos
e que o instante inicial 7, é tal que

tye|r-T,/2:7+T,/2]. (14)

Um exemplo em que o pulso na saida do filtro ca-
sado tem formato triangular é mostrado na Figura 3.

Figura 3 - Exemplo de instantes de amostragem.

As N,L amostras obtidas para cada uma das con-
formacgodes de feixe sdo reunidas no vetor r de dimen-

sao (NCLNP )Xl dado por

r=an(y,7)+, (15)
emque )
g W)
2w7)=| & ('/:/)XT | .
gy (W), |

sendo 8. (Vf ) o ¢-ésimo elemento do vetor & (W)

dado na Equacao (10), e X; um vetor de dimensao

LN, )x1 com amostras do trem de pulsos resultante
da filtragem de P(f - T) , obtidas nos instantes %, .
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Ainda na expressao (15), o vetor de ruido n é gaus-
siano, de média nula, e pode ser expresso da forma

T
n=[n1 nNC:| ;

sendo 7. o vetor coluna que redine as amostras do

(17)

ruido filtrado associado a ¢-ésima conformacio.
Portanto, de (15), o vetor de observagbes r € gaus-
siano com vetor média

p=E[r]=an(v.7) (18)
€ matriz covariancia
ZzE[(r—,u)(r—,u)H}:E[nnH] (19)
a qual pode ser expressa em blocos como
chcl ”' 2clcN
2= , (20)
ZCN,Cl ENCN,

p— H e
em que T, —E[”c,.”c,]’ com ¢;,¢; €{l,~--,N,}.

c

3. Estimacao ML

O vetor de observagoes r dado na Equagdo (15) é
gaussiano, com apenas o vetor média dependente dos
parametros (05 4 ) Pertanto, a fung¢ao logaritmica
de verossimilhanga [15] pode ser expressa como

l((Ol,Z',l//);r)=

-1 -

5 (r an(y,t )) by 1(r—0(77(1//,r))+§, (21)
séndo & uma constante escalar que nio depende dos
parametros &,T €Y . A estimativa de maxima verossi-
milhanga [15] destes parametros é o argumento que

maximiza , ou, equivalentemente,

(o?ML (7). %y (7)o W10 (r)) =argmin v(a,t,p;r),  (29)
em que (.e)

via,t,p;r)= (r —arn 1//,7))H ! (r —an(l//,r)). (23)

A estimativa Oy \7 ) pode ser obtida partindo-se
da equagdo abaixo, que estabelece uma condigao ne-
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cessaria para a minimizacao de V() em funcao do

parametro & :
ov

o (24)

a=a,,

Ap6s algumas manipulagbes algébricas, conside-
rando que Z nio depende de &, chega-se a

n" (v,7)2'r
n" (v.0)2 n(y. )

Com o resultado acima, a estratégia adotada para

ay (r)= (25)

a determinacdo da estimativa ML de (T,l//) é substi-
tuir a Equacao (25) na Equacao (23), obtendo-se, apds
alguns passos, a seguinte solugao:

‘nH (l//,l')O"lr‘2
n" (v,t)2 'n(y,7)

a qual requer a implementacio de um procedi-

(fML (r)’l/}ML (7”)) = argmax

(r.w)

(26)

mento numérico de otimizacio.
Uma vez obtidas as estimativas de ( ML( )’l/}ML (” )),

retorna-se 2 Equacio (25) para a obtengio de @, (* )

3.1 Matriz de conformacao unitaria

Se a matriz W de conformagao for unitaria, é fa-
J e
com isto, da expressio mostrada na Equacao (20), 2

cil verificar que E% =0 (matriz nula) para !
é uma matriz bloco diagonal.

Neste caso, as estimativas ML dos parametros de
interesse sao dadas por

N, Hy-1 2
‘Z ‘e (v)rzon

c=1

(fML (7). V0 (r)) = argmax

to 3 e () sty @7
€
-~ W l:-l cc C
Ay, (r) ZN: ( )2 iy
l//)| ZT CCZT = T"ML (r) , (28)
V=W (r)

sendo 7. o vetor de observagoes obtido para a ¢c-ésima
conformacgao.




E importante observar que na Equacio (27) os

vetores e matrizes tém dimensdes V. vezes me-
nores do que na Equacgdo (26), tornando o proce-
dimento de otimizacdo computacionalmente bem

mais simples.

3.2 Otimizagao numérica

Optou-se pelo uso da técnica PSO a fim de obter
numericamente as estimativas de azim.te e atraso da-
das nas equagoes (26) e (27).

O algoritmo PSO original foi apresentado em [17]
e utiliza um enxame, formado por um conjunto de
particulas que evolui ao longo das iteragoes para re-
alizar uma varredura bastante flexivel do espaco de
busca do valor 6timo da funcao objetivo. Casos de uso
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do algoritmo PSO na estimagdo ML de parametros
sao encontrados, por exemplo, em [16,18,21]. Neste
trabalho, optou-se pela versao desse algoritmo deno-
minada de APSO (do inglés Accelerated Particle Swarm
Optimization), que se caracteriza p apresentar conver-
géncia rapida [22].

4. Técnica monopulso

As técnicas do tipo monopulso [5] baseadas em ar-
ranjo linear de sensores geram simultaneamente dois
valores resultantes de conformagoes de feixe, confor-
me ilustrado na Figura 4. Calculando-se a razio entre
a diferenca e a soma destes valores, obtém-se a razio
monopulso, que ¢ utilizada para alcancar a estimativa
de azimute.

fig. 4 - Estimagdo de azimute por radar monopulso com arranjo de sensores.

diferenca

angulo
estimado

4.1 Monopulso de amplitude

No caso especifico da técnica monopulso de am-
plitude, as duas conformacoes de feixe sao definidas
com inclinacoes simétricas em relagao a diregao nor-
mal ao arranjo linear. Denota-se por W e W, os

. Ve V_e
vetores de conformagoes utilizados, correspondendo
respectivamente as inclinagoes VeV, que sao
expressos conforme a equagao (12).

conformacéo 1

conformacéo 2

arranjo de

sensores alvo

Além disso, considerando que depois de filtrados
os sinais provenientes dessas conformagoes sio amos-
trados no instante f =¢;, =7, obtém-se, com base nas

equacoes (15) e (16), o vetor dado por

- ayw, a(v)+n, . (29)

a;glwf_sa (w)+ n,

—€
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em que 7, e 1, sdo amostras de ruido associadas
€
as respectivas conformacgoes.
Define-se entao a razdo monopulso como

B def 5

=+ >

(30)

em que 7, € r, s30, respectivamente, 0 Primeiro € se-
gundo elemento de r na Equagao (29).

A razdo monopulso idealizada é definida desprezan-
do-se as parcelas de ruido na Equacao (30), sendo

(w! —wi! )a(v)
—(wyl +w)! Ja(w)

Substituindo as equagbes (12) e (6) na equagao an-

dada por
Buly) def

(31)

terior e supondo N _impar?, obtém-se, apés algumas
a
manipulagées algébricas,

Z(N -y sen(kl//)sen(kt//e)
1/2+ ZN -y *cos kt,//)cos(kt//e)

Ba(v)= (32)

A aproximagio linear de Z (¥) em torno de w =0
é dada por

Ba(w)=B,(0)y, (33)

sendo ﬂi'd (O) a derivada de B ('//) em ¥ =0, aqual

pode ser calculada pela expressao

Z(N 2 (ky.)
124+ Z )N, 1/2 (kl//e)

Admitindo-se que a parte real da razao monopulso

(34)

B.(0)=

medida dada pela Equagao (30) pode ser aproxima-
da por B,(¥), e que esta pode ser aproximada por
(33), chega-se finalmente a seguinte expressao para
a estimativa de ¥ usando esta técnica monopulso de
amplitude:

2 O desenvolvimento considerando N, par é bastante similar.
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Fig. 5 - Ilustracao da evolugao de quatro particulas
do enxame, na implementagao do estimador ML(2)
com RSR = 20 dB e azimute do alvo em 0 rad.

v =9‘ie[ﬂ]
mp ﬂi‘d (0) ,

em que a notacao Re [] denota a parte real do argu-

(35)

mento e Py (0) é uma constante calculada com o uso
da equacao (34).

9. Avaliacao de desempenho

Foram realizadas simulagées de um receptor ra-
dar com arranjo de N, =101 elementos espacados
de uma distancia d =A/2 e sinal com pulso basico
de formato retangular.

A razao sinal/ruido (RSR) considerada é dada pela
divisdo da poténcia média do sinal de interesse na
entrada do arranjo pela poténcia média de ruido na
faixa de frequéncias ocupada por este sinal. Para este
fim, considerou-se como largura de faixa o inverso da
duracao do pulso basico.

Para comparagao com a técnica monopulso de am-
plitude, sdo consideradas inicialmente apenas 2 con-
formagoes (N, =2) no emprego da técnica ML.

No texto a seguir, ML(N ) denota a técnica de es-
timagao ML com N_conformagoes e MA, o estimador
monopulso de amplitude acima apresentado.




Admite-se nesta comparacao que o parametro de
atraso (7) é conhecido, o que é feito usualmente em tra-
balhos que lidam com técnicas monopulso [5,6,7,14].

Em termos mais especificos, as estimativas ML foram
obtidas como solugao do problema de otimizacao em v
com fungao objetivo dada pela equagao (26), admitindo o
valor de 7 conhecido. Cabe lembrar que o parametro v
possui uma relagio biunivoca com o angulo fisico de che-
gada do sinal na entrada do arranjo, dada na Equacao (7).

Com relagdo ao algoritmo APSO, o numero de
particulas utilizado foi 30 e o nimero de iteragoes até
a parada foi ajustado empiricamente em 15.

Uma ilustragao da evolugao, ao longo das iteragoes,
da estimativa de azimute de quatro particulas do enxa-
me no algoritmo APSO é mostrada na Figura 5, a qual
foi obtida com RSR = 20 dB e azimute do alvo em 0 rad.

Nota-se na Figura 5 que, a partir da 82 iteragao,
ha uma concentragao significativa das estimativas em
torno do valor real do angulo do alvo.

Ja na Figura 6 sio mostrados trés exemplos da
evolucio do erro de estimacio obtidas com enxame
de 30 particulas e RSR de 30, 20 e 10 dB.

Percebe-se uma rapida estabilizagao do erro e coe-
réncia entre RSR e erro, no sentido de que o aumen-
to da primeira estd associado a redugao do segundo.
Comportamentos semelhantes foram observados em
outros testes deste tipo.

Figura 6 - Erro de estimagdo com a técnica ML(2)
e diferentes valores de RSR.
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Em seguida, sdo apresentados resultados de avalia-
¢do empirica de polarizagdo, variancia e erro quadra-
tico médio (EQM) de diferentes estimadores, obtidos
com base em 2.000 realiza¢oes independentes.

Uma primeira comparacao de desempenho entre
as técnicas ML(2) e MA foi realizada com inclinacoes
v, = 10,028 rad. Os resultados obtidos com 10 dB
de RSR estao mostrados na Figura 7.

Percebe-se nesta figura que o desempenho do es-
timador MA ¢é praticamente idéntico ao do estimador
ML(2) para valores baixos de azimute do alvo, com
diferencas muito significativas surgindo para valores
maiores. Nota-se em particular o crescimento da po-
larizacao do estimador monopulso acima de 0,04 rad.
Percebe-se também que a degradagio de desempenho
deste estimador se intensifica para maiores valores de
azimute, de modo que o EQM aumenta rapidamente.

Essas caracteristicas de desempenho do estimador
MA podem, em grande medida, ser vistas como con-
sequéncia direta da imprecisao na aproximagao linear
da razdo monopulso, que se intensifica com o aumen-
to do valor do azimute. Uma ilustragio deste efeito
¢ dada na Figura 8 para o caso da razao monopulso
idealizada correspondente as condicoes da Figura 7.

Figura 7 - Desempenho dos estimadores ML(2) e
MA em funcgio do azimute do alvo com RSR de 10 dB.
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Percebe-se na Figura 8 que, de fato, a aproximacao
linear se mostra satisfatéria para valores de azimute
um pouco inferiores a 0,04 rad e se torna de maneira
geral inadequada com azimutes acima deste valor.

Figura 8 - Razdo MA idealizada e sua aproxima-
¢io linear em funcao do azimute do alvo.
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No que diz respeito ao estimador ML(2), a Figura 7
mostra que ele tem polarizacio praticamente desprezivel
para valores de azimute até aproximadamente 0,09 rad.

Os resultados desta figura mostram, em seu con-
junto, que o estimador ML(2) tem desempenho global
significativamente superior ao do estimador MA para
valores de azimute entre 0,04 e 0,09 rad, proporcio-
nando um aumento significativo de abrangéncia.

Os resultados da Figura 9 foram obtidos com RSR
de 20 dB e as mesmas inclinagoes y, ==30,028 rad.
Esses resultados confirmam o aumento de abrangéncia
proporcionado pelo estimador ML(2) em comparagao
com o MA. Nota-se, em particular, resultados pratica-
mente idénticos aos da Figura 7 no que diz respeito a
comparagao de polarizagio.

Realizou-se uma analise mais detalhada da fung¢ao
objetivo do estimador ML(2) e foi verificado que o
aumento do azimute do alvo pode levar a ocorréncia
frequente de dois minimos locais desta fungao, como

ilustrado no exemplo da Figura 10.

Nota-se nesta figura que a funcao objetivo utilizada
pelo estimador ML(2) apresenta dois valores minimos
muito préximos, associados a valores bastante distin-
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tos de seu argumento, sendo um deles corresponden-
te ao azimute correto do alvo. Situacoes semelhantes
a esta podem levar a ocorréncia de elevados erros de
estimagao e consequente aumento do EQM.

Figura 9 - Desempenho dos estimadores ML(2) e
MA em fung¢io do azimute do alvo com RSR de 20 dB.

0.1 T

& MAY=0028

A MU2
01 (2) ‘ ‘

0 0.02 0.04 0.06 0.08
i (rad)
.

Polarizacao (rad)
2

O
&
o &
mmn/v\mm\mm\ﬁ@&@ﬁﬁgggmm& gggoo :
&
&

0.1 0.12

Variancia (rad?)

EQM (rad?)

0.06 0.08
i (rad)

0.1 0.12

Verificou-se, entretanto, que o aumento no nu-
mero de conformacoes utilizadas reduz a intensidade
deste problema. Os resultados apresentados em se-
guida ilustram esta constatagao.

Fig. 10 - Exemplo de funcdo objetivo utilizada
pelo estimador ML(2), obtida com azimute do alvo

em 0,10 rad e 20 dB de RSR.
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5.2 Aumento do numero de conformacoes

Para implementagao do estimador ML(3), utilizou-
-se uma conformacio com inclinacio ¥e = 0rade?
conformagdes com inclinacoes Y, =10,056 rad. As
conformagodes utilizadas com o ML(2) foram as mes-
mas ja citadas anteriormente.

A Figura 11 mostra os resultados de desempenho
obtidos com esses estimadores para uma RSR de 10 dB.

Fig. 11 - Desempenho dos estimadores ML(2) e
ML(3) em funcio do azimute do alvo com RSR de
10 dB.
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Vé-se que o emprego de 3 conformagoes possibi-
lita de fato uma melhora na abrangéncia da estima-
¢ao, proporcionando um desempenho de EQM que
permanece fundamentalmente estavel até valores de
azimute da ordem de 0,105 rad, o que representa
um aumento de aproximadamente 20% em relacao a
abrangéncia do estimador ML(2).

A Figura 12 apresenta resultados de desempenho
dos mesmos estimadores obtidos com RSR de 20 dB.
Percebe-se nesta figura melhora decorrente do aumen-
to da RSR e se observa novamente que o estimador
ML(3) tem aumento de abrangéncia em torno de 20%.

Foi possivel verificar também, em outras simula-
¢oes, que ganhos ainda maiores de abrangéncia podem
ser obtidos com a estimag¢do ML, se combinada com o
emprego de mais de 3 conformagoes.
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Fig. 12 - Desempenho dos estimadores ML(2) e
ML(3) em funcio do azimute do alvo com RSR de
20 dB.
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5.3 Complexidade computacional

Os estimadores ML investigados apresentam desem-
penho superior ao estimador MA, contudo tém comple-
xidade mais elevada, principalmente pela necessidade
de implementagio de uma otimizagao numérica.

Cabe, no entanto, observar que existe espago para
investigacao de algoritmos para esta implementacao
com custo computacional reduzido. Neste trabalho, a
otimizacao foi implementada com o APSO [22], mas
outras alternativas existem e podem ser tentadas em
trabalhos futuros. Por exemplo, ha a possibilidade de
implementar uma combinagao de técnicas como suge-
rido em [14], ou a utilizacdo de fungdes objetivo apro-
ximadas (em relacdo a fung¢io objetivo original), que
proporcionem um custo computacional menor para o

procedimento de otimizagao.

Conclusoes

Investigou-se o emprego do método de maxima
verossimilhanga (ML) para estimagao de azimute de
um alvo em sistemas radar com arranjo de sensores.
No modelo de receptor considerado, o conjunto de si-
nais na saida do arranjo é submetido a conformacées
fixas de feixe seguidas de etapas de filtragem e
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amostragem, para gerar o vetor de observagoes a ser
usado para estimacao de angulo.

Foi abordado inicialmente um estimador ML ca-
paz de produzir também parametros de atraso e
amplitude complexa do sinal recebido. Em seguida,
procedeu-se a investigacio de desempenho de uma
versdao simplificada deste estimador, voltada apenas
para a obtengao do azimute, utilizando duas confor-
magcodes de feixe. Comparado a alternativa que faz uso
da técnica monopulso, o estimador ML de azimute
aqui avaliado proporciona estimativas precisas em
intervalos maiores, porém tem custo computacional
mais alto por requerer otimizagdo numérica para ob-
tencao das estimativas.

Avaliou-se adicionalmente o efeito de um peque-

empregados para a estimagio ML de azimute e se ve-
rificou que a introdugio de uma conformacao adicio-
nal acentua as vantagens de desempenho inicialmen-
te verificadas.

Diregoes para a continuagao desta investigagao em
trabalhos futuros foram apontadas, visando em parti-
cular a reducao de complexidade computacional dos
estimadores ML. Ainda na perspectiva de continua-
¢ao do presente trabalho, cabe notar que, admitindo
o emprego de um arranjo bidimensional de senso-
res, a solugio ML aqui equacionada pode facilmente
ser estendida para contemplar também o angulo de
elevagdo do alvo. A investigacao de desempenho do
estimador de posi¢ao assim obtido se coloca também
como uma alternativa a ser contemplada em traba-

no aumento no numero de conformacoes de entrada lhos futuros.
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