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Resumo: Investiga-se neste trabalho o emprego de uma abordagem 
de máxima verossimilhança (ML, de “maximum likelihood”) 
combinada com um número reduzido de conformações de feixe fixas 
para realizar a estimação do azimute de um alvo num sistema radar 
de vigilância munido de arranjo de sensores. São apresentados 
resultados de simulação para avaliação de desempenho do estimador 
com base em apenas duas conformações. É possível verificar que há 
grande vantagem do estimador ML em comparação com um estimador 
monopulso amplamente utilizado que se vale da mesma quantidade de 
conformações. Resultados adicionais mostram que ganhos maiores de 
desempenho podem ser obtidos com a abordagem ML aqui investigada 
utilizando apenas uma conformação de feixe a mais.

Abstract: This work investigates the combination of the Maximum 
Likelihood (ML) approach with a reduced number of fixed beam 
steerings in order to estimate target azimuth in a surveillance radar-
based system equipped with sensor array. Simulation-based performance 
results of the estimator using only two fixed beams are presented. It is 
verified that there is a great advantage of the ML solution compared to 
an usual monopulse estimator, which employs the same number of beams. 
Additional results show that greater performance gains can be obtained 
with the investigated ML approach using only one additional beam.

Palavras-chave: Radar. Estimação de Azimute. Arranjo de Antenas. 
Conformação de Feixe. Máxima Verossimilhança.

Keywords: Radar. Azimuth Estimation. Antenna Array. Beamforming. 
Maximum Likelihood.

1. Introdução

O emprego de arranjo de antenas e pro-
cessamento digital de sinais em siste-
mas radar é um importante recurso 

de uso corrente, permitindo, entre outras operações, 
a filtragem espacial de sinais [1-2]. Uma questão im-
portante neste contexto é a estimação de azimute do 
alvo em relação ao referencial radar, havendo várias 
propostas na literatura com este objetivo [3-4].

O presente artigo tem como foco a estimação de 
azimute em radares de busca e vigilância [5] que utili-
zam um arranjo linear de antenas.

Os radares de busca e vigilância de maneira geral 
se caracterizam por seguir uma rotina de processa-
mento num amplo volume do espaço em que:
•	 a cada intervalo de tempo a direção de referên-

cia de apontamento da antena é deslocada para o 

centro de um setor, visando detectar a presença 
de um alvo e, em caso de detecção, estimar a sua 
posição;

•	 em seguida, a direção de referência de aponta-
mento da antena é deslocada para o centro de 
um setor vizinho, buscando cobrir progressiva-
mente toda a região de interesse.

Esta rotina básica é seguida tanto por radares pri-
mários quanto secundários. A diferença, para o pro-
blema aqui tratado, é a origem do sinal recebido [5]. 
No primeiro caso, o sinal resulta de um eco produzi-
do pela presença de um alvo na direção de referên-
cia de apontamento, em resposta a uma transmissão 
prévia feita pelo radar primário. Já no segundo caso, 
o sinal é recebido de uma transmissão feita por um 
transmissor cooperativo (transponder).

Em ambas as aplicações, é de grande interesse 
que o estimador de azimute tenha precisão elevada 
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num intervalo angular o mais largo possível em tor-
no da direção de referência de apontamento do ra-
dar [6-7]. Isto possibilita a redução do tempo total de 
cobertura da região de interesse, aumentando assim 
a taxa de atualização de informação de posição do 
alvo [8]. A habilidade de estimar satisfatoriamente 
azimutes em torno da direção de referência de apon-
tamento será aqui denominada abrangência do esti-
mador de azimute.

Outro requisito desejável para um estimador de 
azimute em radares de busca e vigilância é a redu-
zida complexidade computacional, devido à necessi-
dade de repetição de sua operação a intervalos cur-
tos de tempo.

Um exemplo bem conhecido de um estimador de 
azimute de baixa complexidade computacional é o 
das técnicas monopulso [5], originalmente implemen-
tadas usando duas antenas de recepção com respostas 
angulares distintas. Nessas técnicas, a estimativa de 
azimute é obtida com base numa aproximação linear 
da razão entre a diferença e a soma dos sinais prove-
nientes das antenas acima mencionadas, denominada 
razão monopulso.

 Em se tratando de um estimador de azimute ba-
seado em arranjo linear de antenas, uma alternativa 
para reduzir sua complexidade é utilizar um número 
limitado de conformações de feixe fixas, obtidas por 
combinações lineares adequadas dos sinais recebidos 
no arranjo. Na literatura de processamento de sinais 
em radar podem ser encontrados outros usos de con-
formações de feixe fixas, tais como em [9-12].

Duas conformações de feixe fixas são suficientes 
para a implementação de um estimador do tipo mo-
nopulso com arranjo linear de antenas, produzindo 
soluções de complexidade muito baixa. As técnicas 
monopulso, contudo, se caracterizam por produzir 
estimação satisfatória apenas se o alvo estiver numa 
região pequena, próximo à direção de referência de 
apontamento da antena [5,7,13]. Ou seja, são técnicas 
de pequena abrangência.

Cabe notar que a possibilidade de detecção de 
um alvo localizado fora dessa região é baixa, mas não 
pode ser desconsiderada. Em casos assim, a aplica-

ção de uma técnica monopulso gera erros elevados 
de estimação [14]. Esses erros podem ser corrigidos 
em outras etapas de processamento de um receptor 
radar, mas a busca de alternativas para evitá-los ou 
reduzi-los ainda é de interesse [13].

Este artigo se propõe a desenvolver e avaliar um 
estimador de maior abrangência através da técnica de 
máxima verossimilhança (ML, de maximum likelihood 
[15]) utilizando um número reduzido de conforma-
ções de feixe fixas.

Apresenta-se inicialmente a dedução de um estima-
dor ML baseado em múltiplas conformações de feixe 
que lida com dois outros parâmetros desconhecidos, 
além do azimute. Em seguida, o trabalho se concen-
tra na estimação de azimute, em condições iguais ou 
próximas das usualmente admitidas para emprego de 
técnicas monopulso.

A implementação dos estimadores ML considera-
dos neste trabalho requer uma técnica de otimização 
numérica para encontrar o valor do argumento que 
maximiza a função objetivo. Optou-se pelo uso de 
um algoritmo PSO (particle swarm optimization) [16-18] 
para este fim.

Mostra-se, através de resultados de simulação, que 
a abordagem ML em um conjunto pequeno de con-
formações de feixe fixas permite a obtenção de au-
mentos significativos na abrangência de estimação em 
relação a uma técnica monopulso típica.

O artigo está organizado em seis seções. Na seção 
II é apresentado o modelo do sistema adotado. Na se-
ção III é apresentada a estratégia de estimação inves-
tigada, na seção IV se apresenta o equacionamento da 
técnica monopulso usada como referência, e na seção 
V são apresentados os resultados de avaliação de de-
sempenho. Por fim, a seção VI contém as principais 
conclusões do trabalho.

2. Modelo de sistema
Considera-se neste trabalho o emprego de um ar-

ranjo composto de aN elementos de antena, omnidi-
recionais, espaçados entre si de uma distância fixa d 
ao longo de uma estrutura linear. Uma ilustração des-
te tipo de arranjo é mostrada na Figura 1.
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Fig. 1 - Modelo do arranjo de antena.

Admite-se a reflexão passiva pelo alvo do sinal en-
viado por um radar primário ou a transmissão por 
um transmissor cooperativo com recepção do sinal 
por um radar secundário. Para ambas as situações, 
considera-se que a frente de onda proveniente do 
alvo incide sobre o radar fazendo um ângulo θ com 
a direção normal ao arranjo linear, conforme mostra 
a Fig. 1.

Considerando um cenário com radar primário, a 
envoltória complexa do sinal transmitido é dada por

( ) ( ) ( )t ts t tα θ ρ= ,	 0, pt N T ∈   ,	 (1)
em que

( ) ( )
1

0

pN

m

t p t mTρ
−

=

= −∑ ,		  (2)

sendo Np o número de pulsos em sequência, T o inter-
valo de tempo entre pulsos, ( ) ( )p t p t o formato de pulso 
básico transmitido e ( ) ( )t tα θ α θ uma amplitude complexa 
cujo módulo é relacionado à potência de transmissão 
na direção θ.

O equivalente em banda básica do sinal recebido 
pelo k-ésimo sensor do arranjo pode ser expresso 
como [11]

( ) ( )

( )

2

,

c
dj f k sen

k r

k

kdx t t sen e
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z t

π τ θ
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 
+

	 (3)

com {0, , 1ak N∈ − }. Os termos cf  e λ  deno-
tam, respectivamente, a frequência e o comprimento 
de onda da portadora, c é a velocidade da luz e τ  é o 
atraso em relação ao instante de transmissão.

A amplitude de ( ) ( )t tα θ α θ depende da potência vin-
da do alvo (por transmissão própria ou reflexão, em 

função do tipo de radar) e do ganho do diagrama de 
recepção em θ. É admitido que ( ) ( )t tα θ α θ é desconheci-
do, porém de natureza não aleatória.

Por sua vez, o termo ( ) ( )k kz t z t representa o ruído 
térmico gerado pelo k-ésimo sensor, sendo modela-
do como um processo complexo gaussiano, de mé-
dia nula e densidade espectral de potência constan-
te numa faixa de frequências muito maior do que a 
ocupada pelo sinal de interesse. A Equação (3) ignora 
um eventual deslocamento Doppler da frequência do 
sinal, porém essa suposição é razoável para muitas 
aplicações [19].

Supõe-se1 que /aN d c τ , e redefine-se a ampli-
tude complexa com incorporação de fatores de defa-
sagem que independem da posição do sensor. Assim, 
a expressão (3) é reescrita como

( ) ( ) ( )
12

2
aN dj k sen

k kx t t e z t
π θ

λαρ τ
− − − 

 ≈ − + ,  (4)

sendo ( )
( )2 1c a

dj f N sen

r e
π τ θ

λα α θ
 − + − 
 = .

É importante observar que o fator α  depende de θ 
e τ . Entretanto, no problema aqui definido, esta de-
pendência será desconsiderada, tal como em [19,20].

Reescrevendo (4) em notação vetorial, tem-se

( ) ( ) ( ) ( )x t t a z tαρ τ ψ= − + ,		         (5)

em que ( ) ( ) 1
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=
 =  z  são 

vetores-coluna de dimensão  x1 aN  e ( ) ( )ψ ψa a é o vetor-
-diretor dado por
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T1 1

2 2
a aN Nj j

e e
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sendo

2 d senψ π θ
λ

= 				           (7)

1	 Suposição válida porque a distância do radar ao alvo é 
usualmente muito maior que Nad.



 RMCT • 27

VOL.40 Nº2 2023
https://doi.org/10.22491/rmct.v40i2.11051.pt

com [ ]/ 2, / 2θ π π∈ − .
Aos sinais gerados na saída dos sensores é aplica-

do um conjunto de cN  conformações fixas de feixes, 
conforme mostra a Figura 2, que ilustra a sequência 
das principais operações realizadas no receptor.

Os sinais gerados pelas conformações são dados por

( ) ( ) ( ) ( )H Hy t W x t y t W x t= = 		         (8)

( ) ( ) ( )t g v tαρ τ ψ= − +         ,		         (9)
em que

( ) ( )Hg W aψ ψ= , 				       (10)

( ) ( )Hv t W z t= 				          (11)

e W é a matriz de conformação fixa com dimensão 
 x a cN N . Cada coluna dessa matriz corresponde ao 

vetor normalizado de conformação de feixe em uma 
dada direção [ ]/ 2, / 2cθ π π∈ − , definido como

( )1
c c

a

w def a
Nψ ψ ,				         (12)

com { }1, , 1, ,c cc N c N∈ ∈  , ( ) ( ). .a a definido na Equação (6) e 
c c

d senψ π θ
λ

= .

Fig. 2 - Diagrama de blocos do receptor.
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Convém observar que se W for unitária, i.e., 
HWW I= , o vetor de ruído ( ) ( )v t v t tem matriz covari-

ância ( ) ( )H 2E v t v t Iσ  =  . Em [15], é demonstrado 
que essa condição é alcançada se 2 /

i jc c ak Nθ θ π− = , 
, {0, , 1i j cc c N∀ ∈ … − } e k Z∈ .
Conforme mostrado na Figura 2, os sinais resul-

tantes das conformações de feixe passam por filtros 
casados e são amostrados, dando origem à entrada 

do estimador de azimute. Considera-se os instantes 
de amostragem dados por

( ) ( ), 0 1 1l m at t l T m T= + − + − ,		 (13)

para { }1, , 1, ,p pm N m N∈ … ∈ …  e { }1, , 1, ,l Ll L∈ … ∈ …{1,...,L}, sendo L a quanti-
dade de amostras sucessivas por pulso e Ta o intervalo 
de tempo entre amostras.

Admite-se que o pulso na saída do filtro casado 
tem energia significativa no intervalo de Tp  segundos 
e que o instante inicial T0  é tal que

0 / 2; / 2p pt T Tτ τ ∈ − +  .		  (14)

Um exemplo em que o pulso na saída do filtro ca-
sado tem formato triangular é mostrado na Figura 3.

Figura 3 - Exemplo de instantes de amostragem.

As pN L  amostras obtidas para cada uma das con-
formações de feixe são reunidas no vetor r de dimen-
são ( ) x1 c pN LN  dado por

( ),r n nα ψ τ= + ,				         (15)

em que
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,			        (16)

sendo ( )cg ψ  o c-ésimo elemento do vetor ( )g ψ  
dado na Equação (10), e τχ  um vetor de dimensão 
( ) x1 pLN  com amostras do trem de pulsos resultante 
da filtragem de ( )tρ τ− , obtidas nos instantes ,l mt .
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Ainda na expressão (15), o vetor de ruído n é gaus-
siano, de média nula, e pode ser expresso da forma

1 c

T

Nn n n =   ,			        (17)

sendo cn  o vetor coluna que reúne as amostras do 
ruído filtrado associado à c-ésima conformação.

Portanto, de (15), o vetor de observações r é gaus-
siano com vetor média

[ ] ( ),E rµ αη ψ τ= = 			        (18)

e matriz covariância

( )( )H HE r r E nnµ µ   Σ = − − =    ,	      (19)

a qual pode ser expressa em blocos como

1 1 1

1

Nc

N N Nc c c

c c c c

c c c c

Σ Σ 
 

Σ =  
 Σ Σ 



  



,			        (20)

em que HE
i j i jc c c cn n Σ =   , com { }, 1, , , 1, ,i j c i j cc c N c c N∈ ∈ { }, 1, , , 1, ,i j c i j cc c N c c N∈ ∈  .

3. Estimação ML
O vetor de observações r dado na Equação (15) é 

gaussiano, com apenas o vetor média dependente dos 
parâmetros ( )( ), , , , α τ ψ α τ ψ. Portanto, a função logarítmica 
de verossimilhança [15] pode ser expressa como

( )( ), , ;l rα τ ψ =

( )( ) ( )( )11 , ,
2

H
r rαη ψ τ αη ψ τ ξ−−
− Σ − + ,	     (21)

sendo ξ  uma constante escalar que não depende dos 
parâmetros ,   eα τ ψ . A estimativa de máxima verossi-
milhança [15] destes parâmetros é o argumento que 
maximiza ( ) ( ). .l l, ou, equivalentemente,

( ) ( ) ( )( )
( )

( )
, ,

, ,   ,ˆ ˆˆ , ;ML ML MLr r r argmin r
α τ ψ

α τ ψ ν α τ ψ= ,    (22)
em que

( ) ( )( ) ( )( )H 1, , ; , , .r r rν α τ ψ αη ψ τ αη ψ τ−= − Σ −
     (23)

A estimativa ( )ˆML rα  pode ser obtida partindo-se 
da equação abaixo, que estabelece uma condição ne-

cessária para a minimização de ( ).ν  em função do 
parâmetro α :

ˆ

0
MLα α

ν
α =

∂
=

∂
.				         (24)

Após algumas manipulações algébricas, conside-
rando que Σ  não depende de α , chega-se a 

� � � �
� � � �
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1

,

, ,
ˆ

H

ML Hr
� �

�
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�

��
η             Σ    r

η             Σ    η .		       (25)

Com o resultado acima, a estratégia adotada para 
a determinação da estimativa ML de ( )( ), ,τ ψ τ ψ é substi-
tuir a Equação (25) na Equação (23), obtendo-se, após 
alguns passos, a seguinte solução:

� � � �� �
� �

� �
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2
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,

,
,

, ,
ˆˆ

H
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�

��
η             Ó r

η             Σ    η ,    (26)

a qual requer a implementação de um procedi-
mento numérico de otimização.
Uma vez obtidas as estimativas de ( ) ( )( ), ˆˆML MLr rτ ψ , 
retorna-se à Equação (25) para a obtenção de ( )ˆML rα .

3.1 Matriz de conformação unitária

Se a matriz W de conformação for unitária, é fá-
cil verificar que 0

i jc cΣ =  (matriz nula) para i j  e 
com isto, da expressão mostrada na Equação (20), Σ  
é uma matriz bloco diagonal.

Neste caso, as estimativas ML dos parâmetros de 
interesse são dadas por

( ) ( )( )
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2
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1
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sendo cr  o vetor de observações obtido para a c-ésima 
conformação.
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É importante observar que na Equação (27) os 
vetores e matrizes têm dimensões cN  vezes me-
nores do que na Equação (26), tornando o proce-
dimento de otimização computacionalmente bem 
mais simples.

3.2 Otimização numérica

Optou-se pelo uso da técnica PSO a fim de obter 
numericamente as estimativas de azim.te e atraso da-
das nas equações (26) e (27).

O algoritmo PSO original foi apresentado em [17] 
e utiliza um enxame, formado por um conjunto de 
partículas que evolui ao longo das iterações para re-
alizar uma varredura bastante flexível do espaço de 
busca do valor ótimo da função objetivo. Casos de uso 

do algoritmo PSO na estimação ML de parâmetros 
são encontrados, por exemplo, em [16,18,21]. Neste 
trabalho, optou-se pela versão desse algoritmo deno-
minada de APSO (do inglês Accelerated Particle Swarm 
Optimization), que se caracteriza p apresentar conver-
gência rápida [22].

4. Técnica monopulso
As técnicas do tipo monopulso [5] baseadas em ar-

ranjo linear de sensores geram simultaneamente dois 
valores resultantes de conformações de feixe, confor-
me ilustrado na Figura 4. Calculando-se a razão entre 
a diferença e a soma destes valores, obtém-se a razão 
monopulso, que é utilizada para alcançar a estimativa 
de azimute.

fig. 4 - Estimação de azimute por radar monopulso com arranjo de sensores.
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estimador
monopulso

soma

diferença arranjo de
sensores

ângulo
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4.1 Monopulso de amplitude

No caso específ﻿ico da técnica monopulso de am-
plitude, as duas conformações de feixe são definidas 
com inclinações simétricas em relação à direção nor-
mal ao arranjo linear. Denota-se por w��ϵ

 e w��ϵ
 os 

vetores de conformações utilizados, correspondendo 
respectivamente às inclinações ��ϵ. e ��ϵ. , que são 
expressos conforme a equação (12).

Além disso, considerando que depois de filtrados 
os sinais provenientes dessas conformações são amos-
trados no instante 0t t τ= = , obtém-se, com base nas 
equações (15) e (16), o vetor dado por

� �
� �
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� �

� �
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em que  n��ϵ e n��ϵ são amostras de ruído associadas 
às respectivas conformações.

Define-se então a razão monopulso como

1 2

1 2

r rdef
r r

β −
+  ,					         (30)

em que r1 e r2 são, respectivamente, o primeiro e se-
gundo elemento de r na Equação (29).

A razão monopulso idealizada é definida desprezan-
do-se as parcelas de ruído na Equação (30), sendo 
dada por

� � � � � �
� � � �

H H

H Hid def � �

� �

�
� �

�
� �

� �

�

�

w w a

w w a
 ϵ              ϵ

ϵ                      ϵ
 .		       (31)

Substituindo as equações (12) e (6) na equação an-
terior e supondo Na ímpar2, obtém-se, após algumas 
manipulações algébricas,

� �
� �� � � � � �

� �� � � � � �

1 1 /2

1

1 1 /2

1
1/ 2

a a
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k
id N N
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sen k sen k

cos k cos k

� �
� �
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� �

�
� �

�

�
�

�
�

ϵ

ϵ

.	      (32)

A aproximação linear de ( )idβ ψ  em torno de 0ψ =  
é dada por

( ) ( )' 0id idβ ψ β ψ≈ ,			       (33)

sendo ( )' 0idβ  a derivada de ( )idβ ψ  em 0ψ = , a qual 
pode ser calculada pela expressão

� �
� �� � � �

� �� � � �

1 1 /2

' 1

1 1 /2

1

0
1/ 2

a a

a a
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id N N

k

ksen k

cos k

�
�

�

� �

�
� �

�

�
�

�
�

ϵ

ϵ

.	      (34)

Admitindo-se que a parte real da razão monopulso 
medida dada pela Equação (30) pode ser aproxima-
da por ( )idβ ψ , e que esta pode ser aproximada por 
(33), chega-se finalmente à seguinte expressão para 
a estimativa de ψ  usando esta técnica monopulso de 
amplitude:

2	 O desenvolvimento considerando Na par é bastante similar.

Fig. 5 - Ilustração da evolução de quatro partículas 
do enxame, na implementação do estimador ML(2) 
com RSR = 20 dB e azimute do alvo em 0 rad.

[ ]
( )'

ˆ
0mp

id

e β
ψ

β
=
R

,					         (35)

em que a notação [ ].eR  denota a parte real do argu-
mento e ( )' 0idβ  é uma constante calculada com o uso 
da equação (34).

5. Avaliação de desempenho
Foram realizadas simulações de um receptor ra-

dar com arranjo de 101aN =  elementos espaçados 
de uma distância / 2d λ=  e sinal com pulso básico 
de formato retangular.

A razão sinal/ruído (RSR) considerada é dada pela 
divisão da potência média do sinal de interesse na 
entrada do arranjo pela potência média de ruído na 
faixa de frequências ocupada por este sinal. Para este 
fim, considerou-se como largura de faixa o inverso da 
duração do pulso básico.

Para comparação com a técnica monopulso de am-
plitude, são consideradas inicialmente apenas 2 con-
formações ( 2cN = ) no emprego da técnica ML.

No texto a seguir, ML(Nc) denota a técnica de es-
timação ML com Nc conformações e MA, o estimador 
monopulso de amplitude acima apresentado.
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Admite-se nesta comparação que o parâmetro de 
atraso (τ) é conhecido, o que é feito usualmente em tra-
balhos que lidam com técnicas monopulso [5,6,7,14].

Em termos mais específicos, as estimativas ML foram 
obtidas como solução do problema de otimização em ψ  
com função objetivo dada pela equação (26), admitindo o 
valor de τ conhecido. Cabe lembrar que o parâmetro ψ  
possui uma relação biunívoca com o ângulo físico de che-
gada do sinal na entrada do arranjo, dada na Equação (7).

Com relação ao algoritmo APSO, o número de 
partículas utilizado foi 30 e o número de iterações até 
a parada foi ajustado empiricamente em 15.

Uma ilustração da evolução, ao longo das iterações, 
da estimativa de azimute de quatro partículas do enxa-
me no algoritmo APSO é mostrada na Figura 5, a qual 
foi obtida com RSR = 20 dB e azimute do alvo em 0 rad.

Nota-se na Figura 5 que, a partir da 8ª iteração, 
há uma concentração significativa das estimativas em 
torno do valor real do ângulo do alvo.

Já na Figura 6 são mostrados três exemplos da 
evolução do erro de estimação obtidas com enxame 
de 30 partículas e RSR de 30, 20 e 10 dB.

Percebe-se uma rápida estabilização do erro e coe-
rência entre RSR e erro, no sentido de que o aumen-
to da primeira está associado à redução do segundo. 
Comportamentos semelhantes foram observados em 
outros testes deste tipo.

Figura 6 -  Erro de estimação com a técnica ML(2) 
e diferentes valores de RSR.

Em seguida, são apresentados resultados de avalia-
ção empírica de polarização, variância e erro quadrá-
tico médio (EQM) de diferentes estimadores, obtidos 
com base em 2.000 realizações independentes.

Uma primeira comparação de desempenho entre 
as técnicas ML(2) e MA foi realizada com inclinações 

0,028�� � �ϵ  rad. Os resultados obtidos com 10 dB 
de RSR estão mostrados na Figura 7.

Percebe-se nesta figura que o desempenho do es-
timador MA é praticamente idêntico ao do estimador 
ML(2) para valores baixos de azimute do alvo, com 
diferenças muito significativas surgindo para valores 
maiores. Nota-se em particular o crescimento da po-
larização do estimador monopulso acima de 0,04 rad. 
Percebe-se também que a degradação de desempenho 
deste estimador se intensifica para maiores valores de 
azimute, de modo que o EQM aumenta rapidamente.

Essas características de desempenho do estimador 
MA podem, em grande medida, ser vistas como con-
sequência direta da imprecisão na aproximação linear 
da razão monopulso, que se intensifica com o aumen-
to do valor do azimute. Uma ilustração deste efeito 
é dada na Figura 8 para o caso da razão monopulso 
idealizada correspondente às condições da Figura 7.

Figura 7 -  Desempenho dos estimadores ML(2) e 
MA em função do azimute do alvo com RSR de 10 dB.
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Percebe-se na Figura 8 que, de fato, a aproximação 
linear se mostra satisfatória para valores de azimute 
um pouco inferiores a 0,04 rad e se torna de maneira 
geral inadequada com azimutes acima deste valor.

Figura 8 -  Razão MA idealizada e sua aproxima-
ção linear em função do azimute do alvo.

No que diz respeito ao estimador ML(2), a Figura 7 
mostra que ele tem polarização praticamente desprezível 
para valores de azimute até aproximadamente 0,09 rad.

Os resultados desta figura mostram, em seu con-
junto, que o estimador ML(2) tem desempenho global 
significativamente superior ao do estimador MA para 
valores de azimute entre 0,04 e 0,09 rad, proporcio-
nando um aumento significativo de abrangência.

Os resultados da Figura 9 foram obtidos com RSR 
de 20 dB e as mesmas inclinações 0,028�� � �ϵ  rad. 
Esses resultados confirmam o aumento de abrangência 
proporcionado pelo estimador ML(2) em comparação 
com o MA. Nota-se, em particular, resultados pratica-
mente idênticos aos da Figura 7 no que diz respeito à 
comparação de polarização.

Realizou-se uma análise mais detalhada da função 
objetivo do estimador ML(2) e foi verificado que o 
aumento do azimute do alvo pode levar à ocorrência 
frequente de dois mínimos locais desta função, como 
ilustrado no exemplo da Figura 10.

Nota-se nesta figura que a função objetivo utilizada 
pelo estimador ML(2) apresenta dois valores mínimos 
muito próximos, associados a valores bastante distin-

tos de seu argumento, sendo um deles corresponden-
te ao azimute correto do alvo. Situações semelhantes 
a esta podem levar à ocorrência de elevados erros de 
estimação e consequente aumento do EQM.

Figura 9 -  Desempenho dos estimadores ML(2) e 
MA em função do azimute do alvo com RSR de 20 dB.

Verificou-se, entretanto, que o aumento no nú-
mero de conformações utilizadas reduz a intensidade 
deste problema. Os resultados apresentados em se-
guida ilustram esta constatação.

Fig. 10 -  Exemplo de função objetivo utilizada 
pelo estimador ML(2), obtida com azimute do alvo 
em 0,10 rad e 20 dB de RSR.
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5.2 Aumento do número de conformações

Para implementação do estimador ML(3), utilizou-
-se uma conformação com inclinação 0� �ϵ  rad e 2 
conformações com inclinações 0,056�� � �ϵ  rad. As 
conformações utilizadas com o ML(2) foram as mes-
mas já citadas anteriormente.

A Figura 11 mostra os resultados de desempenho 
obtidos com esses estimadores para uma RSR de 10 dB.

Fig. 11 - Desempenho dos estimadores ML(2) e 
ML(3) em função do azimute do alvo com RSR de 
10 dB.

Vê-se que o emprego de 3 conformações possibi-
lita de fato uma melhora na abrangência da estima-
ção, proporcionando um desempenho de EQM que 
permanece fundamentalmente estável até valores de 
azimute da ordem de 0,105 rad, o que representa 
um aumento de aproximadamente 20% em relação à 
abrangência do estimador ML(2).

A Figura 12 apresenta resultados de desempenho 
dos mesmos estimadores obtidos com RSR de 20 dB. 
Percebe-se nesta figura melhora decorrente do aumen-
to da RSR e se observa novamente que o estimador 
ML(3) tem aumento de abrangência em torno de 20%.

Foi possível verificar também, em outras simula-
ções, que ganhos ainda maiores de abrangência podem 
ser obtidos com a estimação ML, se combinada com o 
emprego de mais de 3 conformações.

Fig. 12 - Desempenho dos estimadores ML(2) e 
ML(3) em função do azimute do alvo com RSR de 
20 dB.

5.3 Complexidade computacional

Os estimadores ML investigados apresentam desem-
penho superior ao estimador MA, contudo têm comple-
xidade mais elevada, principalmente pela necessidade 
de implementação de uma otimização numérica.

Cabe, no entanto, observar que existe espaço para 
investigação de algoritmos para esta implementação 
com custo computacional reduzido. Neste trabalho, a 
otimização foi implementada com o APSO [22], mas 
outras alternativas existem e podem ser tentadas em 
trabalhos futuros. Por exemplo, há a possibilidade de 
implementar uma combinação de técnicas como suge-
rido em [14], ou a utilização de funções objetivo apro-
ximadas (em relação à função objetivo original), que 
proporcionem um custo computacional menor para o 
procedimento de otimização.

Conclusões
Investigou-se o emprego do método de máxima 

verossimilhança (ML) para estimação de azimute de 
um alvo em sistemas radar com arranjo de sensores. 
No modelo de receptor considerado, o conjunto de si-
nais na saída do arranjo é submetido a conformações 
fixas de feixe seguidas de etapas de filtragem e 
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amostragem, para gerar o vetor de observações a ser 
usado para estimação de ângulo.

Foi abordado inicialmente um estimador ML ca-
paz de produzir também parâmetros de atraso e 
amplitude complexa do sinal recebido. Em seguida, 
procedeu-se à investigação de desempenho de uma 
versão simplificada deste estimador, voltada apenas 
para a obtenção do azimute, utilizando duas confor-
mações de feixe. Comparado à alternativa que faz uso 
da técnica monopulso, o estimador ML de azimute 
aqui avaliado proporciona estimativas precisas em 
intervalos maiores, porém tem custo computacional 
mais alto por requerer otimização numérica para ob-
tenção das estimativas.  

Avaliou-se   adicionalmente o efeito de um peque-
no aumento no número de conformações de entrada 

empregados para a estimação ML de azimute e se ve-
rificou que a introdução de uma conformação adicio-
nal acentua as vantagens de desempenho inicialmen-
te verificadas.

Direções para a continuação desta investigação em 
trabalhos futuros foram apontadas, visando em parti-
cular à redução de complexidade computacional dos 
estimadores ML. Ainda na perspectiva de continua-
ção do presente trabalho, cabe notar que, admitindo 
o emprego de um arranjo bidimensional de senso-
res, a solução ML aqui equacionada pode facilmente 
ser estendida para contemplar também o ângulo de 
elevação do alvo. A investigação de desempenho do 
estimador de posição assim obtido se coloca também 
como uma alternativa a ser contemplada em traba-
lhos futuros.
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