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Abstract: This study investigates the combination of maximum
likelihood (ML) with a reduced number of fixed beam steering to
estimate target azimuth in a surveillance radar-based system equipped
with sensor array. This study describes simulation-based performance
results of the estimator using only two fixed beams. It found the great
advantage of the ML solution when compared to a usual monopulse
estimator, which employs the same number of beams. Additional results
show that the investigated ML approach using only one additional beam
can obtain greater performance gains.

Resumo: Investiga-se neste trabalho o emprego de wma abordagem de
mdxima verossimilhan¢a (ML, de “maximum likelihood”) combinada
com um numero reduzido de conformagoes de feixe fixas para realizar
a estimagao do azimule de um alvo num sistema radar de vigilancia
munido de arranjo de sensores. Sao apresentados resultados de simulagao
para avaliagao de desempenho do estimador com base em apenas duas
conformagdes. E possivel verificar que hd grande vantagem do estimador
ML em comparagao com um estimador monopulso amplamente utilizado
que se vale da mesma quantidade de conformagaes. Resultados adicionais

mostram que ganhos maiores de desempenho podem ser obtidos com a
abordagem ML aqui investigada utilizando apenas uma conformagao
de feixe a mais.
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1. Introduction te its position;

¢ Then, the reference direction to direct the anten-

he use of antenna array and digital sig- na is moved to the center of a neighboring sector

nal processing in radar systems configu- to progressively cover the entire region of interest.
res an important current resource use Both primary and secondary radars follow this ba-
that can spatially filter signals, among other opera- ¢ routine. The difference for the problem this study

tions [1-2]. An important issue in this context refers to addresses refers to the origin of the received signal
[5]. In the first case, the signal results from an echo

produced by the target in the reference direction in

estimating the azimuth of a target in relation to radar
reference. The literature has several proposals with
such aim [3-4].

This study focuses on azimuth estimation in search

response to a previous transmission from the primary
radar. In the second case, the signal is received from
and surveillance radars [5] that use a linear array of a transmission made by a cooperative transmitter
antennas. (transponder).
Search and surveillance radars generally follow a In both applications, it is of great interest that the
processing routine in a large volume of space in which:  azimuth estimator has great accuracy in the widest
* the reference direction of the antenna is moved possible angular range around the radar reference
direction [6-7], which can reduce the total coverage

time of the region of interest and thus increase the

to the center of a sector at each time interval to
detect the target and, in case of detection, estima-
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update rate of the position information of target [8].
This study will refer to the ability to satisfactorily es-
timate azimuths around reference directions as the
coverage of the azimuth estimator.

Another desirable requirement for an azimuth es-
timator in search and surveillance radars refers to a
reduced computational complexity due to the need to
repeat its operation at short intervals of time.

A well-known example of a low computational
complexity azimuth estimator refers to monopulse te-
chniques [5], originally implemented using two recei-
ving antennas with distinct angular responses. These
techniques estimate the azimuth by a linear appro-
ximation of the ratio between the difference and the
sum of the signals coming from the above-mentioned
antennas, called monopulse ratio.

In the case of an azimuth estimator based on a
linear array of antennas, an alternative to reduce its
complexity refers to using a limited number of fixed
beam conformations obtained by appropriate linear
combinations of the signals received in the array. The
literature on signal processing offers other uses of fi-
xed beam conformations, such as in [9-12].

Overall, two-fixed beam formations can imple-
ment a monopulse-type estimator with a linear anten-
na array, producing very low-complexity solutions.
However, monopulse techniques only obtain satisfac-
tory estimations if the target is in a small region close
to the antenna reference direction [5,7,13]. In other
words, these techniques have small coverage.

Note that, despite the low possibility of detecting
a target outside this region, it must still be conside-
red. In such cases, a monopulse technique generates
high estimation errors [14], which can be corrected in
other processing steps of a radar receiver, but the se-
arch for alternatives to avoid or reduce them remains
of interest [13].

This study aims to develop and evaluate a more
comprehensive estimator using the maximum like-
lihood technique (ML [15]) using a reduced number
of fixed beam formations.

This research first deduces an ML estimator ba-
sed on multiple beam conformations that address two
other unknown parameters in addition to the azimu-

th. Then, it focuses on azimuth estimation under con-
ditions equal to or close to those usually admitted for
the use of monopulse techniques.

The implementation of ML estimators in this re-
search requires a numerical optimization to find the
value of the argument that maximizes the objective
function. We opted for particle swarm optimization
(PSO) [16-18] for this.

This study shows, by simulation results, that the
ML approach in a small set of fixed beam conforma-
tions can significantly increase the estimation range
when compared to a typical monopulse technique.

This study is organized into six sections. Section
IT describes the model of the adopted system. Section
I11 offers the investigated estimation strategy, section
IV shows the equation of the monopulse technique
used as reference, and section V describes the results
of performance evaluation. Finally, section VI offers
the main conclusions of this study.

2. System Model

This study uses an arrangement composed of N,
omnidirectional antenna elements spaced from each
other by a fixed distance { along a linear structure.
Figure 1 illustrates this type of arrangement.

Fig. 1 - Antenna array model.

The arrangement enables passive reflection by the
target of the signal sent by a primary radar or trans-
mission by a cooperative transmitter with reception of
the signal by a secondary radar. Both situations con-
sider that the wavefront from the target falls on the
radar at an angle ¢ with the direction normal to the

linear arrangement (Fig. 1).
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Considering a scenario with primary radar, the
complex envelope of the transmitted signal is given
by

5(t)=a,(0)p(t), te[0.N,T], (1)
in which
p(t)= 3 ple-mT) 2

in which Np refers to the number of sequential
pulses; 7, the time interval between pulses; 7 (t ) the
basic transmitted pulse shape; and & () a complex
amplitude the modulus of which is related to the
transmission power in the direction 6.

The baseband equivalent of the signal received by
the k-th sensor array can be expressed as [11]

—j2n| for+ ﬂsen
X, (f)=a,(9)p(t—f—ﬁsen6’)e " (f g gj
C

(3)

+z, (t),

with k€{0,--,N,—1}. The terms f. and A deno-
te, respectlvely, the frequency and wavelength of the
carrier, ¢ is the speed of light and 7 is the delay in
relation to the moment of transmission.

The breadth of @,(8) depends on the strength
from the target (by self-transmission or reflection, de-
pending on the type of radar) and the gain of the re-
ception diagram in ¢. This study takes ¢, (6) as unk-
nown, but not random in nature.

In turn, Z (1 ) represents the thermal noise from
the k-th sensor, which is modeled as a complex Gaus-
sian process with a zero mean and constant power
spectral density in a much larger frequency range
than that occupied by the signal of interest. Equation
(3) ignores a possible Doppler shift of the signal fre-
quency — although this assumption is reasonable for

many applications [19].
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This study assumes! that N,d /¢ <7 | redefining
the complex amplitude by incorporating lag factors
that are independent of the position of the sensor.
Thus, expression (3) is rewritten as

—j2ﬂ(k—N“2_1jgsen9

x (t)=ap(t—7)e

- gSen
in which: a =«, ((9) ﬂr(2fcr N 6)

It is important to note that & depends on 0 and
T . However, the problem defined here will disregard
dependence, as in [19,20].

Rewriting (4) in vector notation, we have
x(t)=ap(t-t)a(y)+z(1), )

N=[x ()], and 2(0=[z ()],

configure dimension column vectors N, X1 and

in which x(

a (l//) , the vector director, given by

_ _ T
a(y)= {ej[]vzl)w % IJW} , (6)
in which
V= 2ﬂ%sen6’ (7)

with, O e[-7/2,7/2]

The signals generated at the output of the sensors
ar applied as a set of V. fixed bundle forming, as sho-
wn in Figure 2, which illustrates the sequence of the
main operations performed on the receiver.

The signals generated by the conformations are
given by

HO-WHO- )
=ap(t-7)g(v)+v(1), (9

1A valid assumption since the distance from the radar to

the target is usually much greater than N d.
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in which
glw)=m"a(y), (10)
v(t)=w"z(z) (11)

and W is the fixed forming matrix with N, XN,
dimensions. Each column of this matrix corresponds

to the normalized beamforming vector in a given di-

rection 0, € [_77/2,” / 2], defined as

1
W, def ——=a(v.), (12)

a

with ce{l’m’N"}, a(.) defined in Equation (6)

and y, = 27zzsei16’C .

Fig. 2 - Receiver block diagram.
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Note thatif W unitary, i.e., wwh =1 , the noise vec-
tor v(7) has the covariance matrix E[V(t)vH (t):l =o'l
. [15] has shown that this condition is achieved if
0% _acj =2k7T/Na , Vci,cj S {0,...,Nc -1Yand ke Z.

As Figure 2 shows, the signals resulting from the

Arranjo de Antenas

Filtros Casados

beam conformations pass through matched filters
and are sampled, giving rise to the input of the azi-
muth estimator. The sampling times given by

=ty +(I-1)T,+(m-1)T, (13)

,m

toward M€ {L...N,} and I €{1,....L}in which L is
the number of successive samples per pulse and T,
the time interval between samples.

This study takes that the pulse at the outlet of the
matched filter has significant energy in the range of
T, seconds and that the initial instant 7}, is such that

toe[T—Tp/2;r+Tp/2]. (14)

Figure 3 shows an example in which the pulse at
the outlet of the matched filter is triangular.

Figure 3 - Example of sampling instants.

The N,L samples obtained for each beam con-
formation are assembled in the vector r dimension

(NCLNp)xl given by

r=an(y,7)+, (15)

in which
g(v)+

¢(y.7)= gZ(V;h , (16)
gy (v)+

in which &, (‘//) is the ¢-th element of the vec-
tor & (‘//)
a (LN » )Xl dimension with samples from the square
wave resulting from the filtering of £ (t - T) obtained

in Equation (10) and X, is a vector with

at moments £, .
Still in expression (15), the noise vector n it is
Gaussian with a null mean, which can be expressed as

n:[n1 ny. JT, (17)
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In which 7. is the column vector that gathers the
samples of the filtered noise associated with the ¢-th
conformation.

Therefore, from (15), the vector of observations r
Gaussian with the following vector mean

u=E[r]=an(y.7) (18)

and the following covariance matrix
2=E|(r-p)(r=p)" |=E[m"],

which can be expressed in blocks such as

3 e Y

C GCN,

(19)

X= : (20)

NG N CN,

in which =, =E[n n! |with ¢»¢; & {l N}

3. ML Estimation

The vector of observations r in Equation (15) is
Gaussian, with only the mean vector dependent on
the parameters (05, Ta‘//). Therefore, the logarithmic
likelihood function [15] can be expressed as

l((a,f,t//);r)=

-1

5 (21)

S r-an(v.o)) 2 (r-an(y.0))+¢,

in which & is a scalar constant that dispenses with
the parameters @,7 and ¥ - The maximum likelihood
estimate [15] of these parameters is the argument that
maximizes ! () or, equivalently,

(O?ML (7). 2y (7). W10 (r)) =a;("gmi)n v(a,o,pir), (22)
a,ty

in which

Harair)=(r=an(y.2))" = (r—an(y.c)). ©3)
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The estimate @y (’” ) can be obtained from the
equation below, which establishes a necessary condi-
tion for minimizing V(-), depending on the parame-
ter & :

o

=0
oa

(24)

a=a,,

After some algebraic manipulations, considering
that 2 dispenses with & , we arrive at

" (l//,T) o'r
"(w,7)0'¢(v,7)

With the above result, the strategy adopted to de-

Ay ()= p (25)

termine the ML estimate of (7, ‘//) refers to replacing
Equation (25) in Equation (23), obtaining, after a few
steps, the following solution:

N " (v.2) 07
(TML (r)’V/ML (V)) —aremax (:H (l//: T) 0'_1(: (l//a T) 7

(=)
which requires the implementation of numerical

(26)

optimization.
Once the estimates of (f v (7)o W (7 )), we return
to Equation (25) to obtain @, (r)

3.1 Unit conformation matrix

If the matrix W of conformation is unitary, it is
easy to find that 2., =0 (null array) to 7# J. This
shows, based on the expression in Equation (20), that
¥ configures a diagonal block matrix.

Thus, the ML estimates of the parameters of inte-
rest are given by

2
‘ZNQ& (v) 'z,
£y (7)., (7)) = argmax —— (27)
( ML( ) ML( )) () " gc (W)|2 ZTHZZCIZT
and
. g (W) x'z.r
()= Z“ ( )|)2
l// Zz' cc/’(‘r Z-=TAML (}") , (28)
V= l/}ML (r)

in which 7. the vector of observations obtained for

the c—conformatlon.
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Note that the vectors and matrices in Equation (27)
have dimensions V. times smaller than in Equation
(26), making the optimization procedure computatio-
nally much simpler.

3.2 Numerical optimization

We chose to use the PSO technique to numerically
obtain the azimuth and delay estimates in equations
(26) and (27).

The original PSO algorithm was described in [17].
It uses a swarm formed by a set of particles that evol-
ves over iterations to perform a very flexible scan of
the search space for the optimal value of the objective

function. Use cases of the PSO algorithm in ML para-
meter estimation have been described, for example,
in [16,18,21]. This study chose the version of this al-
gorithm called Accelerated Particle Swarm Optimiza-
tion (APSO), which shows rapid convergence [22].

4. Monopulse technique

Monopulse-type techniques [5] based on a linear
array of sensors simultaneously generate two values
resulting from beam conformations (Figure 4). Cal-
culating the ratio between the difference and the sum
of these values obtains the monopulse ratio, which is
used to achieve the azimuth estimate.

Fig. 4 - Azimuth estimation by monopulse radar with sensor array.

diferenca

angulo
estimado

4.1 Monopulse amplitude

The specific case of the monopulse amplitude te-
chnique define the two beam formations with symme-
trical inclinations in relation to the direction normal
and W,

used conformation vectors, corresponding respecti-

to the linear arrangement. W,, refer to the

vely, to the ¥,sand ¢ slopes, which are expressed

according to equation (12).

conformacéo 1

conformacéo 2

arranjo de

sensores alvo

Moreover, after filtration, the signals from these con-
formations are sampled at instant ¢ =, =7, obtaining,
based on equations (15) and (16), the vector given by

. O‘lew}a(‘/’)"'”m L (29)
aleu/_oa(‘//)—l_nw

-0

In which n, and 7, are noise samples associa-
Yo Vo

ted with the respective conformations.
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The monopulse ratio consists of

Y defrl_72

=rn+r >’

(30)

in which r, and r, are the first and second ele-
ments of r in the Equation (29) , respectively.
The idealized monopulse ratio disregards the noi-

se portions in Equation (30), given by

(., —w,: )a(y)

(w +w )a(l//)'

Ba(v) def (31)

Substituting equations (12) and (6) into the pre-
vious equation and assuming an odd N 2 obtains, af-
ter some algebraic manipulations,

(v
L
1/2+ Z

Dtz sen(ky ) sen(ky )
N 1/2 ( )

Balw)= cos (ky ) cos (ky )

=0

The linear approximation of B (‘// ) around

is given by

B (V/)zﬁ;d (O)l//, (33)

in which :B;d (0) is the derivative of Bu (‘//) in
¥ =0, which can be calculated by the expression

S hsen (k)
1/2+ ZN -1)(N, 1)/2 (kllfo)

(34)

Bu(0)=

Assuming that the real part of the measured mo-
nopulse ratio in Equation (30) can be approximated
by B, (v)and that this can be approximated by (33),
we finally arrive at the following expression for the
estimate of ¥ . Using this monopulse amplitude te-
chnique:

2 The development considering N, pair is quite similar.
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Fig. 5 - Illustration of the evolution of four swarm
particles in the implementation of the ML(2) estima-
tor with SNR = 20 dB and target azimuth at 0 rad.

g = iﬁe[ p ]
mp ﬂi‘d (O) )
In which ?ﬁe[] denotes the actual part of the

argument and ,B,d( ), a constant calculated using
equation (34).

(35)

5. Performance Assessment

This study carried out simulations of a radar re-
ceiver with a radar array, with N, =101 elements
spaced d = A/2 apart and a signal with a basic rec-
tangular pulse.

The considered signal-to-noise ratio (SNR) is gi-
ven by dividing the average power of the signal of
interest at the input of the array by the average noise
power in the frequency range occupied by this signal.
For this, the bandwidth was considered the inverse of
the duration of the basic pulse.

The comparison with amplitude monopulse only
considered two conformations (N, = 2) in the use of
the ML technique.

In the following text, ML(N ) denotes the ML esti-
mation technique with N_conformations and MA, the
monopulse amplitude estimator above.




This comparison assumes the delay parameter (t)
is known, which is usually done in studies addressing
monopulse techniques [5,6,7,14].

In more specific terms, ML estimates were obtained
as a solution to the optimization problem in ¥ with the
objective function given by equation (26), assuming the
known value of 7 . It is worth remembering that ¥ has
a one-to-one relation with the physical angle of arrival
of the signal at the input of the array in Equation (7).

Regarding the APSO algorithm, the number of
used particles totaled 30 and the number of iterations
until the stop was empirically adjusted and totaled 15.

Figure 5 illustrates the evolution over iterations
of the four-particle azimuth estimate cluster by the
APSO algorithm, which was obtained with SNR = 20
dB and target azimuth at 0 rad.

In Figure 5 shows that, from the eighth iteration
onward, a significant concentration of estimates occur
around the real value of the target angle.

On the other hand, Figure 6 shows three examples
of the evolution of estimation error obtained with a
swarm of 30 particles and 30-, 20-, and 10-dB SNRs.

A rapid stabilization of the error and coherence
between SSR and error occur, in the sense that the
increase in the former is associated with the reduction
of the latter. Other tests of this type have observed
similar behaviors.

Figure 6 - Estimation error with the ML(2) techni-
que and different RSR values.
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This study now describes the results of empirical
evaluation of polarization, variance, and mean square
error (MSE) of different estimators, obtained based
on 2,000 independent achievements.

A first performance comparison between the
ML(2) and MA techniques was performed with slopes
¥., =10,028 Rad. Figure 7 shows the results obtai-
ned with a 10-dB of SNR.

This figure evinces that the performance of the
MA estimator is practically identical to that of the
ML(2) estimator for low values of target azimuth,
with very significant differences for higher values,
especially the growth of the polarization of the mo-
nopulse estimator above 0.04 rad. It is also noticed
that the performance degradation of this estimator
increases to higher azimuth values, so the MSE in-
creases rapidly.

These performance characteristics of the MA esti-
mator can, to a large extent, be seen as a direct conse-
quence of the inaccuracy in the linear approximation
of the monopulse ratio, which increases with greater
azimuth values. Figure 8 illustrates this effect for the
idealized monopulse ratio corresponding to the con-
ditions in Figure 7.

Figure 7 - Performance of ML(2) and MA estima-
tors as a function of target azimuth with a 10-dB SNR.
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Figure 8 shows that, in fact, the linear approxima-
tion is satisfactory for azimuth values slightly below
0.04 rad and becomes generally inadequate with azi-
muths above this value.

Figure 8 - Idealized MA ratio and its linear appro-

ximation as a function of the target azimuth.
10 ; ; ;

Razao Monopulso
Aprox. Linear

10 . . . .
0 0.02 0.04 0.06 0.08

¥ (rad)

0.1 0.12

0.14

Regarding the ML(2) estimator, Figure 7 shows it
has practically negligible polarization for azimuth va-
lues up to about 0.09 rad.

The results of this figure show, as a whole, that
the ML(2) estimator has a significantly higher ove-
rall performance than the MA estimator for azimuth
values from 0.04 to 0.09 rad, significantly increasing
coverage.

Figure 9 results were obtained with an SNR of 20
dB and the same slopes ., =%0,028 Rad. The-
se results confirm the increase in coverage from the
ML(2) estimator when compared to MA. In particu-
lar, results are practically identical to those of Figure
7 regarding polarization comparison.

This research performed a more detailed analysis
of the objective function of the ML(2) estimator was
performed and found that the increase in the azimu-
th of the target can lead to the frequent occurrence of
two local minima of this function, as illustrated in the
example in Figure 10.

In this figure, the objective function the ML(2) es-
timator used shows two very close minimum values,
associated with values that quite differ from its argu-
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ment, one of which corresponds to the correct azi-
muth of the target. Situations similar to this can lead

to high estimation errors and consequent increase in
the MSE.

Figure 9 - Performance of ML(2) and MA estima-
tors as a function of target azimuth with a 20-dB SNR.

=l

g 0.1

2

< 04

N

=

©

o -01

o 0 0.02 0.04 0.06 0.08 0.1 0.12

N i (rad)

E’\JU T T T T

© A ML) o @L\@%@%@%@Q@ga&

[s] o

S ) Y :::AA O

«T 4 VATATATATATATATAT 4TI o it

T oo000e 04 ‘ ‘ ‘ ‘ ‘

= 0 0.02 0.04 0.06 0.08 0.1 0.12

&

o

£

=

o

w I I I I I I
0 0.02 0.04 0.06 0.08 0.1 0.12

+r (rad)

However, this study found that the increase in the
number of used conformations reduces the intensity of
this problem. The results below illustrate this finding.

Fig. 10 - Example of an objective function used by
the ML(2) estimator, obtained with a 0.10-rad target
azimuth and a 20-dB SNR.

20

18 + y|
16
14
12 Y

1
10+ + P
\




5.2 Increase in the number of formations

To implement the ML(3) estimator, a conforma-
tion with a ¥ =0 rad slope and two conformations
with ¥, =%0,056 Rad slopes were used. The used
conformations with the ML(2) were the same as
those above.

The Figure 11 shows the performance results ob-
tained with these estimators for an SNR of 10 dB.

Fig. 11 - Performance of the ML(2) and ML(3) es-
timators as a function of the target azimuth with a 10-
dB SNR.
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Fig. 12 - Performance of the ML(2) and ML(3) es-
timators as a function of the target azimuth with a 20-
dB SNR.
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The use of three conformations can improve esti-
mation coverage, providing an MSE that remains fun-
damentally stable up to azimuth values of the order of
0.105 rad, which represents an increase of about 20%
over the coverage of the ML estimator(2).

Figure 12 shows the performance results of the
same estimators obtained with a 20-dB SNR. This fi-
gure shows an improvement due to the increase in
the SNR and that the ML(3) estimator increases cove-
rage by around 20%.

Other simulations show ML estimations can obtain
even greater gains of coverage if combined with the

use of more than three conformations.
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5.3 Computational complexity

The investigated ML estimators performed better
than the MA estimator but have higher complexity,
mainly due to the need to implement numerical op-
timization.

However, it should be noted that there remains
room for research for algorithms for this implemen-
tation with reduced computational cost. This study
implemented with APSO [22] but other alternatives
exist and may be tried in future researches, for exam-
ple, combining techniques — as suggested in [14] —
or using approximate objective functions (in relation
to the original objective function), reducing the com-
putational costs of optimization.

Conclusions

This study investigated the use of maximum li-
kelihood (ML) to estimate the azimuth of a target in
radar systems with sensor array. The considered re-
ceiver model subjects the set of signals at the output
of the array to fixed beam conformations, followed by
filtering and sampling steps, to generate the vector of
observations to estimate angles.
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This study first evaluated an ML estimator that
can produce delay parameters and obtain complex
amplitude of the received signal. Then, it inves-
tigated the performance of a simplified version of
this estimator, aimed only at obtaining the azimuth,
using two beam conformations. Compared to the al-
ternative, which uses the monopulse technique, the
evaluated ML azimuth estimator provides accurate
estimates at longer intervals but has a higher com-
putational cost as it requires numerical optimization
to obtain its estimates.

ML to estimate the azimuth and found that an addi-
tional conformation improves the initially verified
performance advantages.

Directions for the continuation of this investigation
in future works were pointed out, especially aiming at
reducing the computational complexity of ML esti-
mators. Still in the perspective of continuing this re-
search, it should be noted that, assuming the use of
a two-dimensional array of sensors, the ML solution
considered here can easily be extended to encompass
the target elevation angle. The investigation of the

This research also evaluated the effect of a small performance of the position estimator thus obtained

increase in the number of input conformations in the also offers an alternative for future studies.
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