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Abstract: This study investigates the combination of maximum 
likelihood (ML) with a reduced number of fixed beam steering to 
estimate target azimuth in a surveillance radar-based system equipped 
with sensor array. This study describes simulation-based performance 
results of the estimator using only two fixed beams. It found the great 
advantage of the ML solution when compared to a usual monopulse 
estimator, which employs the same number of beams. Additional results 
show that the investigated ML approach using only one additional beam 
can obtain greater performance gains.

Resumo: Investiga-se neste trabalho o emprego de uma abordagem de 
máxima verossimilhança (ML, de “maximum likelihood”) combinada 
com um número reduzido de conformações de feixe fixas para realizar 
a estimação do azimute de um alvo num sistema radar de vigilância 
munido de arranjo de sensores. São apresentados resultados de simulação 
para avaliação de desempenho do estimador com base em apenas duas 
conformações. É possível verificar que há grande vantagem do estimador 
ML em comparação com um estimador monopulso amplamente utilizado 
que se vale da mesma quantidade de conformações. Resultados adicionais 
mostram que ganhos maiores de desempenho podem ser obtidos com a 
abordagem ML aqui investigada utilizando apenas uma conformação 
de feixe a mais.
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1. Introduction

The use of antenna array and digital sig-
nal processing in radar systems configu-
res an important current resource use 

that can spatially filter signals, among other opera-
tions [1-2]. An important issue in this context refers to 
estimating the azimuth of a target in relation to radar 
reference. The literature has several proposals with 
such aim [3-4].

This study focuses on azimuth estimation in search 
and surveillance radars [5] that use a linear array of 
antennas.

Search and surveillance radars generally follow a 
processing routine in a large volume of space in which:
•	 the reference direction of the antenna is moved 

to the center of a sector at each time interval to 
detect the target and, in case of detection, estima-

te its position;
•	 Then, the reference direction to direct the anten-

na is moved to the center of a neighboring sector 
to progressively cover the entire region of interest.

Both primary and secondary radars follow this ba-
sic routine. The difference for the problem this study 
addresses refers to the origin of the received signal 
[5]. In the first case, the signal results from an echo 
produced by the target in the reference direction in 
response to a previous transmission from the primary 
radar. In the second case, the signal is received from 
a transmission made by a cooperative transmitter 
(transponder).

In both applications, it is of great interest that the 
azimuth estimator has great accuracy in the widest 
possible angular range around the radar reference 
direction [6-7], which can reduce the total coverage 
time of the region of interest and thus increase the 
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update rate of the position information of target [8]. 
This study will refer to the ability to satisfactorily es-
timate azimuths around reference directions as the 
coverage of the azimuth estimator.

Another desirable requirement for an azimuth es-
timator in search and surveillance radars refers to a 
reduced computational complexity due to the need to 
repeat its operation at short intervals of time.

A well-known example of a low computational 
complexity azimuth estimator refers to monopulse te-
chniques [5], originally implemented using two recei-
ving antennas with distinct angular responses. These 
techniques estimate the azimuth by a linear appro-
ximation of the ratio between the difference and the 
sum of the signals coming from the above-mentioned 
antennas, called monopulse ratio.

 In the case of an azimuth estimator based on a 
linear array of antennas, an alternative to reduce its 
complexity refers to using a limited number of fixed 
beam conformations obtained by appropriate linear 
combinations of the signals received in the array. The 
literature on signal processing offers other uses of fi-
xed beam conformations, such as in [9-12].

Overall, two-fixed beam formations can imple-
ment a monopulse-type estimator with a linear anten-
na array, producing very low-complexity solutions. 
However, monopulse techniques only obtain satisfac-
tory estimations if the target is in a small region close 
to the antenna reference direction [5,7,13]. In other 
words, these techniques have small coverage.

Note that, despite the low possibility of detecting 
a target outside this region, it must still be conside-
red. In such cases, a monopulse technique generates 
high estimation errors [14], which can be corrected in 
other processing steps of a radar receiver, but the se-
arch for alternatives to avoid or reduce them remains 
of interest [13].

This study aims to develop and evaluate a more 
comprehensive estimator using the maximum like-
lihood technique (ML [15]) using a reduced number 
of fixed beam formations.

This research first deduces an ML estimator ba-
sed on multiple beam conformations that address two 
other unknown parameters in addition to the azimu-

th. Then, it focuses on azimuth estimation under con-
ditions equal to or close to those usually admitted for 
the use of monopulse techniques.

The implementation of ML estimators in this re-
search requires a numerical optimization to find the 
value of the argument that maximizes the objective 
function. We opted for particle swarm optimization 
(PSO) [16-18] for this.

This study shows, by simulation results, that the 
ML approach in a small set of fixed beam conforma-
tions can significantly increase the estimation range 
when compared to a typical monopulse technique.

This study is organized into six sections. Section 
II describes the model of the adopted system. Section 
III offers the investigated estimation strategy, section 
IV shows the equation of the monopulse technique 
used as reference, and section V describes the results 
of performance evaluation. Finally, section VI offers 
the main conclusions of this study.

2. System Model
This study uses an arrangement composed of aN  

omnidirectional antenna elements spaced from each 
other by a fixed distance d along a linear structure. 
Figure 1 illustrates this type of arrangement.

Fig. 1 - Antenna array model.

The arrangement enables passive reflection by the 
target of the signal sent by a primary radar or trans-
mission by a cooperative transmitter with reception of 
the signal by a secondary radar. Both situations con-
sider that the wavefront from the target falls on the 
radar at an angle θ with the direction normal to the 
linear arrangement (Fig. 1).
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Considering a scenario with primary radar, the 
complex envelope of the transmitted signal is given 
by

( ) ( ) ( )t ts t tα θ ρ= ,	 0, pt N T ∈   ,	 (1)

in which

( ) ( )
1

0

pN

m

t p t mTρ
−

=

= −∑ ,		 (2)

in which Np refers to the number of sequential 
pulses; T, the time interval between pulses; ( ) ( )p t p t the 
basic transmitted pulse shape; and ( ) ( )t tα θ α θ a complex 
amplitude the modulus of which is related to the 
transmission power in the direction θ.

The baseband equivalent of the signal received by 
the k-th sensor array can be expressed as [11]
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+
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with {0, , 1ak N∈ − }. The terms cf  and λ  deno-
te, respectively, the frequency and wavelength of the 
carrier, c is the speed of light and τ  is the delay in 
relation to the moment of transmission.

The breadth of ( ) ( )t tα θ α θ depends on the strength 
from the target (by self-transmission or reflection, de-
pending on the type of radar) and the gain of the re-
ception diagram in θ. This study takes ( ) ( )t tα θ α θ as unk-
nown, but not random in nature.

In turn, ( ) ( )k kz t z t represents the thermal noise from 
the k-th sensor, which is modeled as a complex Gaus-
sian process with a zero mean and constant power 
spectral density in a much larger frequency range 
than that occupied by the signal of interest. Equation 
(3) ignores a possible Doppler shift of the signal fre-
quency — although this assumption is reasonable for 
many applications [19].

This study assumes1 that /aN d c τ , redefining 
the complex amplitude by incorporating lag factors 
that are independent of the position of the sensor. 
Thus, expression (3) is rewritten as

( ) ( ) ( )
12

2
aN dj k sen

k kx t t e z t
π θ

λαρ τ
− − − 

 ≈ − + ,  (4)

in which: ( )
( )2 1c a

dj f N sen

r e
π τ θ

λα α θ
 − + − 
 = .

It is important to note that α  depends on θ and 
τ . However, the problem defined here will disregard 
dependence, as in [19,20].

Rewriting (4) in vector notation, we have

( ) ( ) ( ) ( )x t t a z tαρ τ ψ= − + ,	 (5)

in which ( ) ( ) 1

0

aN
k k

t x t
−

=
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0

aN
k k

t z t
−

=
 =  z  

configure dimension column vectors  x1 aN  and 
( ) ( )ψ ψa a, the vector director, given by

( )
T1 1

2 2
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e e
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in which

2 d senψ π θ
λ

= 		  (7)

with, [ ]/ 2, / 2θ π π∈ −

The signals generated at the output of the sensors 
ar applied as a set of cN  fixed bundle forming, as sho-
wn in Figure 2, which illustrates the sequence of the 
main operations performed on the receiver.

The signals generated by the conformations are 
given by

( ) ( ) ( ) ( )H Hy t W x t y t W x t= = 		  (8)

( ) ( ) ( )t g v tαρ τ ψ= − +         ,	 (9)

1	A valid assumption since the distance from the radar to 
the target is usually much greater than Nad.
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in which

( ) ( )Hg W aψ ψ= , 		 (10)

( ) ( )Hv t W z t= 		  (11)

and W is the fixed forming matrix with  x a cN N .  
dimensions. Each column of this matrix corresponds 
to the normalized beamforming vector in a given di-
rection [ ]/ 2, / 2cθ π π∈ − , defined as

( )1
c c

a

w def a
Nψ ψ ,		  (12)

with { }1, , 1, ,c cc N c N∈ ∈  , ( ) ( ). .a a
 defined in Equation (6) 

and 2c c
d senψ π θ
λ

= .

Fig. 2 - Receiver block diagram.
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Note that if W unitary, i.e., 
HWW I= , the noise vec-

tor ( ) ( )v t v t has the covariance matrix ( ) ( )H 2E v t v t Iσ  = 
. [15] has shown that this condition is achieved if 

2 /
i jc c ak Nθ θ π− = , , {0, , 1i j cc c N∀ ∈ … − } and k Z∈ .
As Figure 2 shows, the signals resulting from the 

beam conformations pass through matched filters 
and are sampled, giving rise to the input of the azi-
muth estimator. The sampling times given by

( ) ( ), 0 1 1l m at t l T m T= + − + − ,		 (13)

toward { }1, , 1, ,p pm N m N∈ … ∈ …  and { }1, , 1, ,l Ll L∈ … ∈ … in which L is 
the number of successive samples per pulse and Ta, 
the time interval between samples.

This study takes that the pulse at the outlet of the 
matched filter has significant energy in the range of 
Tp seconds and that the initial instant T0  is such that

0 / 2; / 2p pt T Tτ τ ∈ − +  .		  (14)

Figure 3 shows an example in which the pulse at 
the outlet of the matched filter is triangular.

Figure 3 - Example of sampling instants.

The pN L  samples obtained for each beam con-
formation are assembled in the vector r dimension 
( ) x1 c pN LN  given by

( ),r n nα ψ τ= + ,		  (15)
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in which ( )cg ψ  is the c-th element of the vec-
tor ( )g ψ  in Equation (10) and τχ  is a vector with 
a ( ) x1 pLN  dimension with samples from the square 
wave resulting from the filtering of ( )tρ τ−  obtained 
at moments l mt .

Still in expression (15), the noise vector n it is 
Gaussian with a null mean, which can be expressed as

1 c

T

Nn n n =   ,	 (17)
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In which cn  is the column vector that gathers the 
samples of the filtered noise associated with the c-th 
conformation.

Therefore, from (15), the vector of observations r 
Gaussian with the following vector mean

[ ] ( ),E rµ αη ψ τ= = 		  (18)

and the following covariance matrix

( )( )H HE r r E nnµ µ   Σ = − − =    ,	 (19)

which can be expressed in blocks such as

1 1 1
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c c c c

c c c c
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 
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  
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,		  (20)

in which HE
i j i jc c c cn n Σ =  with { }, 1, , , 1, ,i j c i j cc c N c c N∈ ∈  .

3. ML Estimation
The vector of observations r in Equation (15) is 

Gaussian, with only the mean vector dependent on 
the parameters ( )( ), , , , α τ ψ α τ ψ. Therefore, the logarithmic 
likelihood function [15] can be expressed as

( )( ), , ;l rα τ ψ =

( )( ) ( )( )11 , ,
2

H
r rαη ψ τ αη ψ τ ξ−−
− Σ − + ,	 (21)

in which ξ  is a scalar constant that dispenses with 
the parameters ,   eα τ ψ and ,   eα τ ψ . The maximum likelihood 
estimate [15] of these parameters is the argument that 
maximizes ( ) ( ). .l l or, equivalently,

( ) ( ) ( )( )
( )

( )
, ,

, ,   ,ˆ ˆˆ , ;ML ML MLr r r argmin r
α τ ψ

α τ ψ ν α τ ψ= ,   (22)

in which
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   (23)

The estimate  ( )ˆML rα  can be obtained from the 
equation below, which establishes a necessary condi-
tion for minimizing ( ).ν , depending on the parame-
ter α :

ˆ

0
MLα α

ν
α =

∂
=

∂
.			   (24)

After some algebraic manipulations, considering 
that Σ  dispenses with α , we arrive at 
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With the above result, the strategy adopted to de-
termine the ML estimate of  ( )( ), ,τ ψ τ ψ refers to replacing 
Equation (25) in Equation (23), obtaining, after a few 
steps, the following solution:

( ) ( )( )
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,

,
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ˆˆ
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which requires the implementation of numerical 
optimization.

Once the estimates of ( ) ( )( ), ˆˆML MLr rτ ψ , we return 
to Equation (25) to obtain ( )ˆML rα .

3.1 Unit conformation matrix

If the matrix W of conformation is unitary, it is 
easy to find that 0

i jc cΣ =  (null array) to i j≠ . This 
shows, based on the expression in Equation (20), that  
Σ  configures a diagonal block matrix.

Thus, the ML estimates of the parameters of inte-
rest are given by
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and
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in which cr  the vector of observations obtained for 
the c-conformation.
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Note that the vectors and matrices in Equation (27) 
have dimensions cN  times smaller than in Equation 
(26), making the optimization procedure computatio-
nally much simpler.

3.2 Numerical optimization

We chose to use the PSO technique to numerically 
obtain the azimuth and delay estimates in equations 
(26) and (27).

The original PSO algorithm was described in [17]. 
It uses a swarm formed by a set of particles that evol-
ves over iterations to perform a very flexible scan of 
the search space for the optimal value of the objective 

function. Use cases of the PSO algorithm in ML para-
meter estimation have been described, for example, 
in [16,18,21]. This study chose the version of this al-
gorithm called Accelerated Particle Swarm Optimiza-
tion (APSO), which shows rapid convergence [22].

4. Monopulse technique
Monopulse-type techniques [5] based on a linear 

array of sensors simultaneously generate two values 
resulting from beam conformations (Figure 4). Cal-
culating the ratio between the difference and the sum 
of these values obtains the monopulse ratio, which is 
used to achieve the azimuth estimate.

Fig. 4 -  Azimuth estimation by monopulse radar with sensor array.
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4.1 Monopulse amplitude

The specific case of the monopulse amplitude te-
chnique define the two beam formations with symme-
trical inclinations in relation to the direction normal 
to the linear arrangement. wψ+ò

 and wψ−ò  refer to the 
used conformation vectors, corresponding respecti-
vely, to the ψ+ò and −ò  slopes, which are expressed 
according to equation (12).

Moreover, after filtration, the signals from these con-
formations are sampled at instant 0t t τ= = , obtaining, 
based on equations (15) and (16), the vector given by

( )
( )

H
1

H
1

w a n
r

w a n
ψ ψ

ψ ψ

αχ ψ

αχ ψ
+ +

− −

 +
=  

+  

ò ò

ò ò

. ,	 (29)

In which  nψ+ò
and nψ−ò  are noise samples associa-

ted with the respective conformations.
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The monopulse ratio consists of

1 2

1 2

r rdef
r r

β −
+  ,			  (30)

in which r1  and r2  are the first and second ele-
ments of r in the Equation (29) , respectively.

The idealized monopulse ratio disregards the noi-
se portions in Equation (30), given by

( ) ( ) ( )
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H H
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w w a
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Substituting equations (12) and (6) into the pre-
vious equation and assuming an odd Na2 obtains, af-
ter some algebraic manipulations,
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The linear approximation of ( )idβ ψ  around 0=  
is given by

( ) ( )' 0id idβ ψ β ψ≈ ,		  (33)

in which ( )' 0idβ  is the derivative of ( )idβ ψ  in  
0ψ = , which can be calculated by the expression

( )
( )( ) ( )
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∑
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ò

ò
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Assuming that the real part of the measured mo-
nopulse ratio in Equation (30) can be approximated 
by ( )idβ ψ and that this can be approximated by (33), 
we finally arrive at the following expression for the 
estimate of ψ . Using this monopulse amplitude te-
chnique:

2	 The development considering Na pair is quite similar.

Fig. 5 -  Illustration of the evolution of four swarm 
particles in the implementation of the ML(2) estima-
tor with SNR = 20 dB and target azimuth at 0 rad.

[ ]
( )'

ˆ
0mp

id

e β
ψ

β
=
R

,		 (35)

In which [ ].eR  denotes the actual part of the 
argument and ( )' 0idβ , a constant calculated using 
equation (34).

5. Performance Assessment
This study carried out simulations of a radar re-

ceiver with a radar array, with 101aN =  elements 
spaced / 2d λ=  apart and a signal with a basic rec-
tangular pulse.

The considered signal-to-noise ratio (SNR) is gi-
ven by dividing the average power of the signal of 
interest at the input of the array by the average noise 
power in the frequency range occupied by this signal. 
For this, the bandwidth was considered the inverse of 
the duration of the basic pulse.

The comparison with amplitude monopulse only 
considered two conformations ( 2cN = ) in the use of 
the ML technique.

In the following text, ML(Nc) denotes the ML esti-
mation technique with Nc conformations and MA, the 
monopulse amplitude estimator above.
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This comparison assumes the delay parameter (τ) 
is known, which is usually done in studies addressing 
monopulse techniques [5,6,7,14].

In more specific terms, ML estimates were obtained 
as a solution to the optimization problem in ψ  with the 
objective function given by equation (26), assuming the 
known value of τ . It is worth remembering that ψ  has 
a one-to-one relation with the physical angle of arrival 
of the signal at the input of the array in Equation (7).

Regarding the APSO algorithm, the number of 
used particles totaled 30 and the number of iterations 
until the stop was empirically adjusted and totaled 15.

Figure 5 illustrates the evolution over iterations 
of the four-particle azimuth estimate cluster by the 
APSO algorithm, which was obtained with SNR = 20 
dB and target azimuth at 0 rad.

In Figure 5 shows that, from the eighth iteration 
onward, a significant concentration of estimates occur 
around the real value of the target angle.

On the other hand, Figure 6 shows three examples 
of the evolution of estimation error obtained with a 
swarm of 30 particles and 30-, 20-, and 10-dB SNRs.

A rapid stabilization of the error and coherence 
between SSR and error occur, in the sense that the 
increase in the former is associated with the reduction 
of the latter. Other tests of this type have observed 
similar behaviors.

Figure 6 - Estimation error with the ML(2) techni-
que and different RSR values.

This study now describes the results of empirical 
evaluation of polarization, variance, and mean square 
error (MSE) of different estimators, obtained based 
on 2,000 independent achievements.

A first performance comparison between the 
ML(2) and MA techniques was performed with slopes 

0,028ψ± = ±ò  Rad. Figure 7 shows the results obtai-
ned with a 10-dB of SNR.

This figure evinces that the performance of the 
MA estimator is practically identical to that of the 
ML(2) estimator for low values of target azimuth, 
with very significant differences for higher values, 
especially the growth of the polarization of the mo-
nopulse estimator above 0.04 rad. It is also noticed 
that the performance degradation of this estimator 
increases to higher azimuth values, so the MSE in-
creases rapidly.

These performance characteristics of the MA esti-
mator can, to a large extent, be seen as a direct conse-
quence of the inaccuracy in the linear approximation 
of the monopulse ratio, which increases with greater 
azimuth values. Figure 8 illustrates this effect for the 
idealized monopulse ratio corresponding to the con-
ditions in Figure 7.

Figure 7 - Performance of ML(2) and MA estima-
tors as a function of target azimuth with a 10-dB SNR.
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Figure 8 shows that, in fact, the linear approxima-
tion is satisfactory for azimuth values slightly below 
0.04 rad and becomes generally inadequate with azi-
muths above this value.

Figure 8 - Idealized MA ratio and its linear appro-
ximation as a function of the target azimuth.

Regarding the ML(2) estimator, Figure 7 shows it 
has practically negligible polarization for azimuth va-
lues up to about 0.09 rad.

The results of this figure show, as a whole, that 
the ML(2) estimator has a significantly higher ove-
rall performance than the MA estimator for azimuth 
values from 0.04 to 0.09 rad, significantly increasing 
coverage.

Figure 9 results were obtained with an SNR of 20 
dB and the same slopes  0,028ψ± = ±ò  Rad. The-
se results confirm the increase in coverage from the 
ML(2) estimator when compared to MA. In particu-
lar, results are practically identical to those of Figure 
7 regarding polarization comparison.

This research performed a more detailed analysis 
of the objective function of the ML(2) estimator was 
performed and found that the increase in the azimu-
th of the target can lead to the frequent occurrence of 
two local minima of this function, as illustrated in the 
example in Figure 10.

In this figure, the objective function the ML(2) es-
timator used shows two very close minimum values, 
associated with values that quite differ from its argu-

ment, one of which corresponds to the correct azi-
muth of the target. Situations similar to this can lead 
to high estimation errors and consequent increase in 
the MSE.

Figure 9 - Performance of ML(2) and MA estima-
tors as a function of target azimuth with a 20-dB SNR.

However, this study found that the increase in the 
number of used conformations reduces the intensity of 
this problem. The results below illustrate this finding.

Fig. 10 - Example of an objective function used by 
the ML(2) estimator, obtained with a 0.10-rad target 
azimuth and a 20-dB SNR.
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5.2 Increase in the number of formations

To implement the ML(3) estimator, a conforma-
tion with a 0ψ =ò  rad slope and two conformations 
with 0,056ψ± = ±ò  Rad slopes were used. The used 
conformations with the ML(2) were the same as 
those above.

The Figure 11 shows the performance results ob-
tained with these estimators for an SNR of 10 dB.

Fig. 11 - Performance of the ML(2) and ML(3) es-
timators as a function of the target azimuth with a 10-
dB SNR.

The use of three conformations can improve esti-
mation coverage, providing an MSE that remains fun-
damentally stable up to azimuth values of the order of 
0.105 rad, which represents an increase of about 20% 
over the coverage of the ML estimator(2).

Figure 12 shows the performance results of the 
same estimators obtained with a 20-dB SNR. This fi-
gure shows an improvement due to the increase in 
the SNR and that the ML(3) estimator increases cove-
rage by around 20%.

Other simulations show ML estimations can obtain 
even greater gains of coverage if combined with the 
use of more than three conformations.

Fig. 12 - Performance of the ML(2) and ML(3) es-
timators as a function of the target azimuth with a 20-
dB SNR.

5.3 Computational complexity

The investigated ML estimators performed better 
than the MA estimator but have higher complexity, 
mainly due to the need to implement numerical op-
timization.

However, it should be noted that there remains 
room for research for algorithms for this implemen-
tation with reduced computational cost. This study 
implemented with APSO [22] but other alternatives 
exist and may be tried in future researches, for exam-
ple, combining techniques — as suggested in [14] —
or using approximate objective functions (in relation 
to the original objective function), reducing the com-
putational costs of optimization.

Conclusions
This study investigated the use of maximum li-

kelihood (ML) to estimate the azimuth of a target in 
radar systems with sensor array. The considered re-
ceiver model subjects the set of signals at the output 
of the array to fixed beam conformations, followed by 
filtering and sampling steps, to generate the vector of 
observations to estimate angles.
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This study first evaluated an ML estimator that 
can produce delay parameters and obtain complex 
amplitude of the received signal. Then, it inves-
tigated the performance of a simplified version of 
this estimator, aimed only at obtaining the azimuth, 
using two beam conformations. Compared to the al-
ternative, which uses the monopulse technique, the 
evaluated ML azimuth estimator provides accurate 
estimates at longer intervals but has a higher com-
putational cost as it requires numerical optimization 
to obtain its estimates. 

This research also evaluated the effect of a small 
increase in the number of input conformations in the 

ML to estimate the azimuth and found that an addi-
tional conformation improves the initially verified 
performance advantages.

Directions for the continuation of this investigation 
in future works were pointed out, especially aiming at 
reducing the computational complexity of ML esti-
mators. Still in the perspective of continuing this re-
search, it should be noted that, assuming the use of 
a two-dimensional array of sensors, the ML solution 
considered here can easily be extended to encompass 
the target elevation angle. The investigation of the 
performance of the position estimator thus obtained 
also offers an alternative for future studies.
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