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RESUMO: A resisténcia balistica e a absor¢ao de micro-ondas de
um composto de tecido de aramida impregnado com polietilenoglicol
e nanoparticulas de hematita foram investigadas para diferentes
concentragoes de hematita entre 0 e 17% em peso. Foram identificados
diferentes mecanismos de absor¢ao de dano e de energia durante o impacto
balistico: formagdo de cone na face posterior do alvo, falha de tragao dos
fios primdrios e deformagao dos fios secunddrios. Em termos de absorgdo
de energia, os melhores resultados foram obtidos com hematita a 7% em
peso, enquanto a menor profundidade de penetragio (DOP) foi observada
em wm composto com hematita a 9% em peso. Uma imagem de microscépio
eletronico de varredura (MEV) do compdsito com 7% de hemaltita apds o
leste balistico mostrou que o principal mecanismo de absor¢do de energia
foi a deformagdo dos fios secunddrios. A absor¢ao de micro-ondas foi
medida usando a técnica de guia de ondas na faixa de frequéncia de 8 a
12 GHz. Os resultados mostraram que a perda dielétrica €7/€’ é mdxima
para uma concentragdo de 3% de hematita, enquanto a perda magnética
W € maxima para wma concentragio de 11% em peso de hematita. Um
compromisso razodvel entre a resisténcia balistica e a absor¢ao de micro-
ondas parece ser wum composto com 7% em peso de hematita.

PALAVRAS-CHAVE: Absor¢do de radar; blindagem balistica; impacto
balistico; fluido de espessamento por cisalhamento.

1. Introdugao

esde a antiguidade a humanidade tem

buscado desenvolver artigos para pro-

tecao do corpo contra perigos e lesoes.

Peles de animais, fibras naturais e materiais metalicos

como bronze, ferro e aco foram usados para esse fim

ao longo da histéria. Durante o século XX, as fibras
naturais deram lugar as sintéticas.

A armadura moderna € projetada para proteger

contra projéteis, bem como contra perfuragdes e

cortes causados por objetos pontiagudos. Elas geral-
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ABSTRACT: The ballistic resistance and microwave absorption of
a composite of aramid fabric impregnated with polyethylene glycol
and hematite nanoparticles was investigated for different hematite
concentrations between 0 and 17 wt%. Different damage and energy
absorbing mechanisms during ballistic tmpact were identified: cone
Sformation on the back face of the target, tensile failure of primary yarns
and deformation of secondary yarns. In terms of energy absorption, the
best resulls were achieved with 7 wt% hematite, while the smallest depth
of penetration (DOP) was observed for a composite with 9 wt% hematite
A scanning electron microscope (SEM) image of the composite with 7%
hematite after the ballistic test showed that the main energy absorption
mechanism was deformation of secondary yarns. Microwave absorption
was measured using the waveguide technique in the frequency range
from 8 to 12 GHz. Resulls showed that the dielectric loss €7/ is
maximum for a concentration of 3% hematite, while the magnetic loss
W is maximum for a concentration of 11 wt% hematite. A reasonable
compromise between ballistic resistance and microwave absorption seems
to be a composite with 7 wt% hematite.

KEYWORDS: Radar absorption; Ballistic shielding; Ballistic impact;
Shear thickening fluid.

mente consistem em uma combinagio de metal, ce-
ramica e tecidos. Os tecidos sdo compostos por fibras
poliméricas de alta resisténcia que fornecem protecao
adicional sem comprometer a mobilidade de solda-
dos, policiais e de equipes de seguranga[l,2]. Refor-
¢os avancados foram desenvolvidos para melhorar a
flexibilidade e reduzir o peso desses tecidos, usando
menos camadas e mantendo a mesma eficiéncia. Esses
reforcos sao desenvolvidos impregnando os tecidos
com fluidos ndo newtonianos cuja viscosidade apa-

rente varia com o aumento da tensao[3-11].
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A escolha de nanoparticulas magnéticas para a
produgio de um fluido ndo newtoniano pode adicio-
nar a propriedade de material absorvente de radar
(RAM) ao tecido. Esses materiais sdo atenuadores efi-
cientes da radiagao eletromagnética em comprimen-
tos de onda usados por radares, reduzindo a secao
transversal do radar de soldados, automadveis, navios
de guerra e aeronaves militares. Teber et al.[12] usa-
ram materiais magnéticos de Ni-Co em compositos
poliméricos como absorvedores de micro-ondas na
banda X (8-12 GHz).

O objetivo deste trabalho foi estudar o reforco
de armadura e o comportamento de absorcao de ra-
dar[12-17] de um fluido nio newtoniano a base de
hematita. Para isso, foram produzidas misturas de na-
noparticulas de hematita com polietileno glicol 200
(PEG-200) com diferentes concentragdes de hematita.
Essas misturas foram usadas para impregnar o teci-
do de aramida; a resisténcia balistica e as proprieda-
des de absor¢ao de micro-ondas do compésito foram
avaliadas para diferentes concentracoes de hematita.
Além disso, foram investigados os mecanismos de ab-
sorcao de danos e energia durante o impacto balistico.

2. Materiais e métodos

2.1 Materiais

Os materiais utilizados neste trabalho foram nitra-
to férrico (Sigma-Aldrich, 98%), glicina (Sigma-Aldri-
ch, 98,5%), 200 g/mol de PEG (Honeywell Riedel-de
Haén), etanol absoluto (Quimex, 93%), tecido arami-
da de 0,28 mm de espessura com densidade de 210 g/
m? [HY Networks (Shanhai)] e MDF de 1 polegada de
espessura (Arauco do Brasil).

2.2 Preparacao da amostra

As nanoparticulas de hematita foram sintetizadas
pelo método de combustio com razao glicina/nitrato
de 0,5[18,19]. Misturas de PEG-200 com hematita 0%,
3%, 5%, 7%, 9%, 11%, 13%, 15% e 17% foram sonica-
das por 30 min, diluidas em 40 mL de etanol, sonica-

das novamente por 30 minutos e utilizadas para im-

pregnar dois pedagos quadrados de tecido de aramida
com area de 49 cm? em um vidro de relégio de 150
mm de diametro. Essas pecas foram prensadas por 10
min a 3 ton/cm® A prensagem das amostras reduz a
massa sem diminuir a resisténcia balistica, pois apenas
o fluido nao impregnado é removido. Em seguida, as
amostras foram secas em estufa a 79 °C por 24 h.

2.3 Métodos Experimentais

A hematita foi caracterizada por difragio de raios
X usando um difratometro Expert Pro Panalitical
com radiaciao Ka (1,5418 Afx) e o software TOPAS ba-
seado no método de Rietveld.

Para os testes balisticos, foi utilizado um rifle de ar
comprimido Gunpower SSS com supressor de ruido
Padrao Armas. O projétil era de chumbo de calibre
22 com uma massa estimada de 3,3 g. A velocidade
inicial foi medida usando um cronégrafo balistico Air
Chrony MK3 com precisao de 0,15 m/s e a velocidade
residual foi medida usando um crondégrafo balistico
ProChrono Pal com precisao de 0,31 m/s.

Apés os testes balisticos, foram obtidas imagens
de amostras com hematita a 7% em um FEI Quanta
FEG 250 SEM.

A caracterizagdo eletromagnética dos compésitos
foi realizada por meio de medidas de refletividade/ab-
sorcao utilizando a técnica de guia de onda na banda
X do espectro eletromagnético (8 a 12 GHz). Este dis-
positivo foi acoplado a um analisador de rede KEYSI-
GHT PNA-L (modelo N5232A) com um gerador de
frequéncia (300 kHz-20 GHz). O material de referén-
cia utilizado para avaliar a eficiéncia de absor¢iao dos
compoésitos foi uma placa de aluminio, a qual reflete
100% da radiagao incidente.

2.4 Massa relativa M,

A massa relativa M_foi calculada usando a Eq. 1
para expressar a quantidade relativa de impregnacao
de aramida pelo fluido[11]:

M_ = (Massa do compdsito — Massa de aramida)/ Mas-
(1)

sa de aramida.
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2.5 Energia de absorcao (E,, )

Nos testes de absor¢ao de energia, o rifle de ar
comprimido foi posicionado a 5 m de distancia do
alvo, que consistia em uma amostra quadrada presa a
uma estrutura circular de MDF fixada por um torno
de bancada e alinhada perpendicularmente ao rifle.
Um crondégrafo balistico foi colocado a 10 cm de dis-
tancia da saida do supressor de ruido e outro croné-
grafo balistico foi colocado 10 cm atrds do compésito
para determinar a velocidade residual do projétil. A
energia de absorcao foi estimada usando a equagao

Ey=M (@ —02)/2 (2)

em que M ¢ a massa do projétil, v € a velocidade
de impacto e v, é a velocidade residual[20]. Pasquali et
al.[21] mostrou que a energia é absorvida por um alvo
de tecido fino devido a seis mecanismos de absorc¢ao/dis-
sipagao: formagio de cone na face traseira do alvo ; falha
de tracao de fios primarios ; deformacao de fios secun-
darios ; obstrucao por cisalhamento ; inicio e crescimen-
to da delaminacao; e rachaduras na matriz[22,23].

2.6 Profundidade de penetracao (DOP)

Nos testes de DOP, o rifle de ar foi posicionado a 5
m de distancia do alvo, que consistia em uma amostra
quadrada presa com fita adesiva a uma placa de MDF
e alinhada perpendicularmente ao rifle[24-29]. Um
supressor de ruido foi usado para aumentar a estabi-
lidade do projétil na saida do rifle de ar, reduzindo a
turbuléncia causado pelo escapamento. As placas de
MDF foram usadas como anteparas porque o MDF ¢
um material homogéneo, plano e denso, sem o grao da
madeira maciga. O cronégrafo balistico foi colocado a 10
cm de distancia da saida do supressor de ruido. Quando
a distdncia entre a arma de ar comprimido e o alvo ¢é pe-
quena, como neste caso, a velocidade de impacto pode
ser substituida pela velocidade de saida[30].

2.7 Fator de mérito

Uma vez que, no ensaio balistico, as amostras sao
finas e homogéneas, a desaceleragio do projétil a
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pode ser assumida como constante. Aplicando a se-
gunda lei de Newton

a=-FM, 3)

quando F € a for¢a no projétil, a equagao de Torri-
celli pode ser escrita na forma

v —v?=2(F/M)d (4)
em que d ¢é a distancia percorrida pelo projétil.

Substituindo a Eq. 2 na Eq. 4 e dividindo pela massa
relativa M_temos

E /M. d) =F/M, ()

Um fator de mérito FM foi definido como a razao
mostrada na Eq. 5 com DOP = d:

FM=E,, / M_DOP (6)

3. Resultados e discussao

3.1 Difracao de raios X

A Figura 1 mostra o padrao de difra¢io de raios X
das nanoparticulas. O difratograma mostrou 100% de
hematita, com tamanho de cristalito de 20 nm e GOF
(bondade do ajuste) de 1,29.

Figura 1 - Difratograma de raios X das nanopar-
ticulas.

3.2 Testes balisticos

Os testes balisticos consistiram em medir a energia
absorvida pelo compésito e a profundidade de pene-
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tracao (DOP) de um projétil em um anteparo de MDF
(placa de fibra de média densidade).

Todos os tiros penetraram completamente na
amostra. Um tiro foi disparado em cada experimen-
to e cinco experimentos foram realizados para cada
composigao.

A Tabela 1 mostra a massa relativa do compésito
(M), a energia de absorcdo (E,, ), a profundidade de

Tabela 1 - Resultados médios dos ensaios balisticos.

penetragdo (DOP) e o fator mérito (M) para todas
as composigoes. A energia absorvida é maxima para
as amostras com 7% de hematita, enquanto a DOP
¢ minima para amostras com 9% de hematita. Isso é
atribuido ao fato de que o uso do anteparo altera o
comportamento mecanico do tecido de aramida, favo-
recendo a quebra das fibras primadrias, o que se torna
um importante mecanismo de absorcao de energia.

A00 0.58 = 0.07 5.70 £ 0.75 29.85 = 0.35 32.72 + 2.26
A03 0.62 = 0.07 6.66 = 0.91 27.75 = 0.39 38.71 = 3.00
A05 0.64 = 0.06 6.69 = 0.40 33.00 = 0.43 31.68 = 1.40
A07 0.57 = 0.07 7.74 = 0.58 28.58 = 0.55 47.51 = 2.78
A09 0.56 = 0.06 6.01 £ 0.76 26.70 = 0.40 40.20 = 2.71
All 0.53 = 0.07 5.21 = 0.37 29.92 + 0.27 32.85 + 1.67
Al3 0.61 = 0.06 6.51 = 0.66 33.93 = 0.55 31.45 = 1.87
Alb 0.58 = 0.06 5.51 = 0.54 27.97 = 0.57 33.96 = 2.12
Al7 0.68 = 0.09 6.14 = 0.55 31.52 = 0.50 28.65 = 1.78

A Figura 2 mostra a dependéncia do fator de mé-
rito da concentragio de hematita. Os valores de FM
foram calculados usando a Eq. 2 com os valores de
E,, . DOP e M_da Tabela 1. A amostra com maior valor
de FM foi a de hematita a 7% (A07).

Figura 2 - Dependéncia do fator de mérito da con-
centracio de hematita.

A Figura 3 mostra uma amostra com hematita a
7% ap6s o teste de absor¢do de energia. Pode-se ver
fios primarios e secundarios deformados devido a

deformacao prolongada em toda a amostra, sugerin-
do uma forca de arrancamento moderada.

Figura 3 - Amostra com hematita a 7% apds o teste
de absorc¢ao de energia.
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3.5 Imagens de microscdpio eletronico de varredura
(MEV) de uma amostra A07

A Figura 4 mostra imagens de MEV de uma amos-
tra com hematita a 7% (A07) antes e depois do tes-
te balistico. Antes do ensaio balistico (a), ha um ex-
cesso de carga que nao impregna os fios de aramida
e, portanto, nio contribui significativamente para a
resisténcia balistica; e ap6s o teste balistico (b), quase
nao ha excesso de carga, exceto no canto inferior di-
reito da imagem, onde se pode ver um agrupamento
provavelmente devido ao impacto[26]. As regides de
impacto, que nao sao mostradas, estio na dire¢ao do
canto superior esquerdo das imagens.

Figura 4 - Imagem MEV de amostras com hemati-
ta a 7% (a) antes e (b) apds o impacto.

(a)

(b)
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3.4 Medidas de refletividade/absorgao

Conforme mostrado na Figura 5, a perda dielétri-
ca £”/¢’ ¢ maxima e a perda de refletividade é minima
para uma concentracao de 3% de hematita. De acordo
com Huo et al.[31], isso se deve ao fato de que, para
concentracoes de hematita maiores que 3%, a pro-
fundidade da pele torna-se muito pequena devido ao
aumento da condutividade e a maior parte da onda
eletromagnética é refletida. Conforme mostrado na
Figura 6, a perda magnética p”’/p’ € maxima para he-
matita 11% em peso na faixa de frequéncia de 8,2 a
11,6 GHz, mas esse efeito nao ¢ suficiente para com-
pensar a perda de reflexdo causada pelo aumento da
condutividade, mostrada na Figura 5 (a). E por isso
que, de acordo com a Figura 5 (b), nao apresenta o
melhor desempenho em termos de refletividade.

Figura 5 - (a) Perda dielétrica e (b) perda de re-
fletividade para aramida pura e aramida impregna-
da com um fluido de espessamento por cisalhamento
(STF) com 3%, 7%, 11% e 17% de hematita.

(@)

(b)
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Figura 6 - Perda magnética para aramida pura e 4. con(;lusa()

aramida impregnada com um SFT com 3%, 7%, 11%
e 17% de hematita. Os compdsitos com 7% de hematita apresentaram o

melhor comportamento balistico, enquanto os compési-
tos com 3% em peso e 11% de hematita apresentaram as
melhores propriedades de absorciao de micro-ondas em
termos de perda dielétrica e magnética, respectivamen-
te. Um meio-termo razoavel entre resisténcia balistica e
absor¢do de micro-ondas parece ser o uso de tecido de
aramida impregnado com 7% em peso de hematita.
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