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RESUMO: Este artigo apresenta wm método para a identifica¢do ou
ajuste de modelos LPV com coeficientes polinomiais. O método é aplicdvel
a sistemas multivaridveis e para a aproximagdo do comportamento de
sistemas nao lineaves. Discute-se também a extensdo para miltiplos
pardmetros variantes. Um modelo de suspensao de um automdvel foi
empregado para ilustrar o método proposto, tendo sido ajustados modelos
com pardmetros endogenos e exigenos.
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1. Introducao

m termos de controle de sistemas nao
lineares, entre as abordagens propos-
tas na literatura consta o classico mé-
todo de gain scheduling, que faz uso dos métodos de
projeto linear e suas ferramentas ja consolidadas.
Apesar de ser bastante empregado, este nao garante
a estabilidade e o desempenho fora dos pontos de
operacao considerados nos projetos lineares, espe-
cialmente nos casos em que a taxa de variagdo pa-
ramétrica é elevada. O fato de existir uma ligagao
entre a formulagao de LMIs (do inglés Linear Matrix
Inequalities) e a Teoria de Lyapunov tem permitido
que os critérios de estabilidade e desempenho de-
senvolvidos para sistemas lineares sejam estendidos
para sistemas lineares nio estacionarios, em especial
para a classe geral de sistemas LPV (do inglés Linear
Parameter Varying) [1].
O controle LPV, com estabilidade local ou global
e desempenho garantidos em grandes envelopes do
dominio de operagio de sistemas multivariaveis, tem
se apresentado como uma alternativa real ao classico
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método de gain scheduling. Os ganhos dos controlado-
res LPV sao automaticamente programados sem a ne-
cessidade de nenhum método ad hoc ou interpolagao.
Desde meados da década de 1990, as técnicas de con-
trole LPV evoluiram significativamente através de trés
métodos distintos [2, 3]: politpicos, de gradeamento e
LFT (doinglés Linear Fractional Transformation). Nos mé-
todos politépicos, consideram-se os modelos de alguns
pontos de operagio, em principio gerados pelos valo-
res extremos das coordenadas do vetor de parametros
variantes. Os demais pontos de operacao sao obtidos a
partir da combinacao afim entre esses modelos extre-
mos, o que pode nao ser verdadeiro. A desvantagem
deste tipo de abordagem esta relacionada também com
o conservadorismo, que provavelmente incluira uma
gama de situagoes que, apesar de consideradas, podem
nao ocorrer na pratica. Por outro lado, o problema de
otimizacio a ser resolvido, inicialmente de dimensio
infinita, se transforma em um problema com dimen-
sao finita e igual ao nimero de vértices do politopo,
uma vez que os demais modelos sio determinados pela

combinacio afim dos modelos nesses vértices [4, 5, 6].
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Nos métodos de gradeamentos, testa-se 0 espago
de parametros variantes em um grid de valores, con-
siderando trajetérias realistas. A vantagem desse tipo
de metodologia é a reducao do conservadorismo em
relacdo a abordagem politépica. Encontram-se na lite-
ratura algoritmos recursivos e por LMIs desse tipo de
metodologia. Por outro lado, ela apresenta sérias res-
trigdes em relacdo ao nimero de parametros variantes,
isto é, o esfor¢o computacional cresce exponencial-
mente e inviabiliza o tratamento de sistemas LPV com
mais de dois parametros variantes. Além disso, conta-
-se também com a hipétese de que o sistema sob andlise
seja relativamente bem-comportado, de maneira que
sua dinamica possa ser aproximada sem um grande
aumento da densidade do grid [7, 8, 6].

No caso das abordagens LFT, o modelo LPV deve
ser transformado em um modelo LFT. Com isso, as
aplicagoes desta metodologia ficam restritas aos casos
em que os modelos LPV apresentam fungdes espe-
cificas dos parametros variantes, como por exemplo
fungbes polinomiais dos parametros variantes. Uma
vez obtido o modelo LFT, a sintese u e outras podem
ser empregadas para o calculo do controlador [9, 10].

Uma grande variedade de aplicagdes de controle
LPV foi inicialmente desenvolvida na area aeronau-
tica, porém as aplicagdes estdo se expandindo para
diversas outras areas, sendo validadas por experi-
mentos ou simulacoes de alta fidelidade, conforme
apresentado em [11]. Um dos principais gargalos hoje
na aplicacao das técnicas de controle LPV é a auséncia
de métodos para obtencao de modelos LPV. Essa ne-
cessidade promoveu o interesse da comunidade cien-
tifica que atua na area de identificagio de sistema, de
forma a se conseguir produzir modelos de sistemas
nao lineares ou nao estaciondrios, com o objetivo final
de uso dos métodos de controle LPV existentes.

Os métodos de identificacio de sistemas visam a
obtencao de modelos a partir dos sinais medidos das
entradas e saidas de uma planta sob estudo [12]. Ba-
sicamente, podem ser classificados em duas frentes,
dependendo da estrutura do modelo: a identificagao
paramétrica e a ndo paramétrica. O caso da identi-
ficacdo nao paramétrica envolve uma estrutura nao
determinada e, consequentemente, um ndmero in-

a+rmet ¢

determinado a priori de parametros. A identificagao
nao paramétrica LPV tem basicamente se dividido em
trés principais abordagens: (a) da funcao de disper-
sao; (b) da maquina de vetor de suporte de minimos
quadrados LS-SVM (do inglés Least Squares-Support
Vector Machine) e (c) baseadas na configuragao Baye-
siana, respectivamente [13, 14, 15] apud [16]. Quanto
a estimagao paramétrica, a estrutura a ser identificada
encontra-se estabelecida previamente e um nimero
determinado de pardmetros devera ser ajustado.

Os métodos de identificagao de sistemas LPV [17]
podem ser classificados, conforme definido em [18],
em duas principais areas, de acordo com a represen-
tagdo matematica utilizada, LPV-10 (do inglés, Input-
-Output) e LPV-SS (do inglés, State Space).

Os métodos LPV-SS adotam uma representacao
discreta em espago de estado ou sua equivalente LFR
(do inglés, Linear Fractional Representation), que per-
mitem a representacao de sistemas MIMO (do inglés,
Multiple-Input Multiple-Output). Mais informagoes so-
bre as abordagens que fazem uso da estrutura LPV-SS
podem ser obtidas em [18].

Este trabalho faz uso da representagao LPV-10, que
utiliza como estrutura matematica os modelos discretos
de séries temporais. Na maioria dos casos, faz uso da
configuracao de predicao de erro LTI e geralmente é
tratado somente para o caso SISO (do inglés, Single-
-Input Single-Output). Um modelo discreto na forma de
séries temporais pode ser representado como:

(k)= =2 a,(0)q (k) + b, (0)q u(k) +e(k) (1)
i=1 7=0
em que q é o operador de atraso no dominio do
tempo, de forma que:

qPy(k) = y(k —p) (2)

A variavel e(k) é o ruido do processo, normalmente
um ruido branco com média nula, n > m, e os coeficien-
tes {a;}]-; e {bj};nzo sdo dependentes do parimetro .

A estimagdo dos coeficientes a, e bj no modelo (1)
pode ser realizada conforme definido em [18]:

(i) Abordagem por interpolagao. Os métodos que

utilizam essa abordagem sao aqueles oriundos do



classico conceito de gain-scheduling, caracterizados por
considerar como ponto de operacao valores especifi-
cos do parametro variante que, uma vez congelado,
determina a estrutura de predigao de erro do siste-
ma LTI, permitindo a identificacao de modelos locais.
O modelo global é obtido através da interpolagio dos
modelos locais, conforme desenvolvido em [19, 20].

(i1) Abordagem por associagiao de conjuntos. Nesse
caso, o ruido nos dados medidos ¢ tratado como incer-
teza deterministica e, em vez de uma estimativa direta
dos coeficientes, é calculado um conjunto de valores
viaveis deles, conforme apresentado em [21, 22]. Este
conjunto viavel representa os valores dos coeficientes
que satisfazem a equagdo do modelo em (1) e a priori
com um erro assumido menor ou igual ao do ruido
nos dados medidos. Uma estimativa direta do coefi-
ciente é obtida calculando-se a média dos valores no
conjunto viavel. Geralmente, essa abordagem utiliza
métodos de programacao nao convexa.

(i) Abordagem por programag¢io nao linear.
Os coeficientes {a;}, e {bj};io do modelo de séries
temporais em (1) sdo estimados por meio de méto-
dos de programagao nio linear para minimizar o erro
médio quadratico de predicao [13, 23]. O objetivo é
realizar uma melhor estimagio que a dos métodos
de regressdo linear. Em alguns casos, isso ¢é feito por
meio de uma parametrizagdo nao linear:

61(9) =i+ (Ii’]_Z
b;(0) = Bjo + BinZ

em que a,, a,, B, e ﬁl.,l eR e a varidvel Z é a sai-
da de uma rede neural artificial que utiliza como en-
tradas o vetor de saidas [(y(k) y(k-1) ---)]", o vetor de
entradas [(u(k) u(k-1) --)]* e o vetor das medidas do
parametro variante [(Ak) O(k-1) ---)]” do sistema a ser
identificado. Esta abordagem, na maioria dos casos,
utiliza um procedimento misto de programacao line-
ar e nao linear por meio de métodos de regressao li-
near combinados com redes neurais.

(iv) Abordagem por regressao linear. Emprega-se
estruturas de modelos lineares de séries temporais
discretas, como por exemplo o ARX (do inglés Au-
toregressive with Exogenous Inpuls), bastante difundido

na literatura de identificacao de sistemas LTI, o qual
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faz parte do pacote de identificagdo de sistemas do
software MATLAB®.
No caso LPV, os coeficientes {a;}%, e {bi};io de (1)

sao fungoes polinomiais do parametro variante, como:

M;

Bi(6) = B0 + ) f0”
p=1

Dessa forma, faz uso do conceito de predigao do
erro LTT via minimos quadrados, recursivos ou nao,
bem como varidveis instrumentais que conduzem a
um ajuste melhor na presenca de sinais com ruido.
Como resultado, um modelo linear nos parametros ¢é
obtido por regressao linear, conforme o trabalho pre-
cursor de [24], abordagem utilizada neste trabalho.

Em [25] é proposto um método de identificacao
LPV-IO pela abordagem por regressio linear, que
busca uma estrutura de modelo parcimoniosa, nao
paramétrica, que possa capturar a dependéncia des-
conhecida dos coeficientes {a;}-; e {bj}r_nzo em fun-
¢ao do parametro variante em (1). Essa dependéncia
pode variar entre as formas polinomial, racional ou
ainda fungdes descontinuas. Para obter uma solucio
eficiente, é proposto no artigo o método LS-SVM, que
conduz a uma construgio do modelo sem as informa-
¢oes a priori de ordem e atraso do sistema em estu-
do. Originalmente desenvolvido como uma classe dos
métodos de aprendizagem supervisionado, conforme
apresentado em [26, 27] apud [25], onde é usado para
obter a estrutura do modelo.

Em [28], um método baseado em IV (do inglés,
Instrumental-Variable) para correcao de viés foi desen-
volvido para a identificacao de modelos SISO LPV-
-10, do tipo ARX, a partir de medigbes da saida e do
sinal do parametro variante, corrompidas por ruido.
O processo de ruido associado a saida é considerado
colorido, de média zero e com distribuicio desconhe-
cida, enquanto as medigoes do sinal do parimetro
variante sdo afetadas por um ruido gaussiano bran-
co. O método proposto elimina o viés resultante dos
métodos originarios de LS (do inglés, Least-Squares)
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quando negligenciam o ruido de medigao existente
no sinal do parametro variante. Assim, fornece uma
estimativa consistente de modelos LPV com depen-
déncia polinomial do parametro variante, cujo instru-
mento usado s6 precisa ser nao correlacionado com o
ruido que corrompe as observagoes de saida. Dessa
forma, uma aproximagao para o parametro variante
sem ruido ndo precisa ser calculada.

O trabalho desenvolvido em [29] é uma andlise do
critério de predicao de erro um passo a frente usado
nos processos de identificacio LPV, com o objetivo de
obter novas fungoes de kernel [27, 30], a serem aplica-
das em processos de identificagao LPV-10 de modelos
nao paramétricos do tipo Box-Jenkins.

Em [31] é apresentado um esquema de correcao
de viés para identificacio de malha fechada de mo-
delos LPV-10O, pela abordagem de regressao, causado
pela correlagdo entre o sinal de entrada que excita o
processo e o ruido de saida. O algoritmo de identi-
ficagdo proposto fornece uma estimativa consistente
dos parametros do modelo de malha aberta quando
o sinal de saida e o sinal da variavel do parametro va-
riante sio corrompidos pelo ruido de medigao.

Em [32] é apresentada uma identificacio LPV-10
nao paramétrica por regressao, usando LS-SVM para
a estimagao do angulo de derrapagem de um auto-
moével de passeio, em substituigio do sensor usado
em automoéveis comerciais, devido ao seu alto custo.
A problematica do artigo € inspirada em [21], que utili-
za o método de abordagem de associa¢ao de conjuntos,
porém o artigo faz uso do método proposto em [25].

O trabalho de [33] apresenta um estudo de iden-
tificacao LPV-10 através da abordagem de regressao,
na busca de um modelo global com estrutura nao
paramétrica sem exigir muita informagao a priori da
ordem do modelo, usando o espago de Hilbert por
meio do RKHS (do inglés, Reproducing Kernel Hilbert
Space), que corresponde a um problema de otimiza-
¢do quadratica global diretamente solucionavel com
restricoes de LMI, para a sele¢ao da estrutura do mo-
delo parcimonioso a ser identificado.

Em [34] é apresentado um método LPV-10 por re-
gressdo online, em que a analise da dindmica é realiza-
da no dominio do parametro variante ou em fungao
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deste nomeado pelos autores de regressor causal, em
vez do dominio do tempo. Como resultado, os coefi-
cientes a serem identificados sdo reestimados usando
apenas dados presentes e, pelo menos, uma estima-
tiva anterior, ou seja, cada predicao de coeficientes
nao depende necessariamente de sua estimativa no
instante anterior, mas de uma de suas estimativas pas-
sadas em um instante em que seus regressores causais
associados sdo semelhantes aos presentes. O critério
proposto para medir essa semelhanga é a norma das
diferencas entre os regressores causais atuais e os pas-
sados. O método proposto apresentou baixo custo
computacional para ajuste semelhante dos coeficien-
tes, em comparagao aos métodos tradicionais offline.

Neste trabalho foram adotadas algumas ideias
apresentadas em [24], tendo sido propostos os se-
guintes desenvolvimentos adicionais: extensdo do
método para sistemas multivaridveis; obtencao da so-
lugdo a partir de um lote de dados armazenados em
vez da estimagdo pela forma recursiva; utilizagao de
polinémios com graus independentes em cada coefi-
ciente do modelo; expansdo com multiplos parame-
tros variantes e a realizacio da defasagem temporal
no modelo entre a saida corrente e a entrada mais
recente, que corresponde ao aumento do grau relati-
vo da funcio de transferéncia do modelo identificado.
A técnica proposta foi também utilizada para aproxi-
mar modelos nao lineares no formato Quasi-LPV por
modelos LPV com coeficientes polinomiais. Para ilus-
trar o método proposto, explorou-se um sistema de
suspensdo de automével em diversas situagdes, com
variagbes de parametros e nao linearidades, aproxi-
mando-as por modelos LPV.

Com relagao a estrutura deste trabalho, a se¢ao 2
apresenta as definigdes de sistemas LPV e Quasi-LPV,
a secao 3 apresenta o método proposto com a exten-
sao para sistema multivariavel e expansao para mul-
tiplos parametros variantes. Na secao 4, encontra-se
formulado o problema tratado para suspensio de Y4
de automével com diversas situacoes de nao lineari-
dades, dependendo do tipo e da quantidade de pa-

rametros variantes. Por fim, a se¢do 5 segue com as

consideracoes finais e conclusoes.



2. Sistemas LPV/Quasi-LPV

Um sistema LPV ou Quasi-LPV é aquele cujas
matrizes A, B, C e D na representacao em espaco de
estados ndo sao constantes e variam em funcio de
parametros exégenos ou endégenos ao sistema. Esses
parametros, que alteram a dinamica do sistema, sao
denominados parametros variantes 6. Um parametro
variante ex6geno é aquele que é externo ao sistema;
ja o endégeno é caracterizado como um parametro
interno, representado por um dos estados do sistema
ou uma fungao dele. Ambos os pardmetros variantes
devem ser mensurdveis para que possam retratar o
sistema. Dependendo dos parametros variantes uti-
lizados na representagao do sistema, os modelos po-
dem ser classificados como LPV ou Quasi-LPV.

Um modelo LPV ¢ reconhecido por ter todos os
parametros variantes exégenos e mensuraveis. A se-
guir, apresenta-se a definicio de modelos LPV.

Definicdo 1 — Modelo LPV [35], apud [36]: Dado
um subconjunto compacto P ¢ R, F, representa o
operador que mapeia ¢ € R* em um vetor 6(¢) € P
de parametros externos, cujas componentes sao fun-
¢oes continuas por partes V¢ € R*. Considere ainda
as func¢oes continuas, A:P — R"*", B:P — R"** C:P —
R>" e D:P — R®*. Um modelo LPV de ordem n é
definido como:

{X(t)} _ {A(H(t)) B(ﬁ(t))}[x(t)}_

y(®)| L CO@®) DO®) ]| u(t) @)

Pode-se acrescentar que o modelo LTV (do inglés,
Linear Time Varying) é um caso particular de sistema
LPV, em que as matrizes da dinamica dependem do
parametro variante 6(t) = ¢.

Um modelo Quasi-LPV é um modelo nao linear que
se assemelha ao modelo LPV em (3). Neste caso, o vetor
0(t) é composto por dois tipos de parametros variantes,
os ex6genos e os endégenos, ambos mensuraveis.

Definicao 2 — Modelo Quasi-LPV [36]: Seja 0(t) € P
tal que que 0()=[Q()" z(1)" ]*, em que () correspon-
de ao vetor das variaveis exégenas, de forma similar ao
sistema LPV em (3), e z(t) corresponde ao vetor das va-

riaveis endégenas, contendo alguns estados do sistema
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ou fungoes destes, que interferem na dinamica do siste-
ma. O modelo Quasi-LPV pode ser definido por:

z(t) An(g(t)) Alz(a(t)) B1(9(t)) z(t)
N[ =14,1(600) A,(6®) B,(6()||n®]
YOI | (6) 6(6) po®)[l1u@®

em que o vetor de estados x(!)=[z()" 5(¢)" 1" e 5(t) re-
presenta o vetor contendo os estados que nao interfe-
rem nas matrizes do modelo.

O exemplo a seguir retrata uma manipulagdo ma-
tematica para transformar um sistema nao linear em
um modelo Quasi-LPV. Os parametros variantes en-
dégenos considerados sao os responsaveis pelas nao
linearidades do sistema e devem ser mensurdveis
para caracterizar essa representagao.

Conforme [2], a titulo de exemplificagio, considere
a planta nao linear modelada pelas seguintes equagoes:

%1 = sen(xy) + x,
X, = X% +u

em que u € a entrada do sistema e considerando x, e x,
como os estados do modelo, pode-se definir x =[x, x,]
como o vetor de estados. Assim, uma representagao
Quasi-LPV desse modelo nao linear poderia ser
. sen(x;)/x; 1 0
X = )/ ]x+[]u.
X, 0 1
Essa representacao pode nido ser adequada, a me-
nos que x, € x, sejam mensuraveis e x, # 0 V¢ € R*
Nesse caso, existem somente os parametros variantes
7z — M — — T
endégenos e 7(t) = @. Assim x(t)=z(t) e z(¢)=[x, x,]".
Supondo que se tenha somente x, mensuravel,
uma representagao mais adequada poderia ser:

. [sen(x)/x; 1 0
X = 0 x, x + [1]u,

que permite reescrever a equagao de forma que a ma-
triz de estado somente possua dependéncia na varia-
vel x, ou seja, z(1) = x, € n(l) = x,.

3. Método proposto

O problema aqui tratado consiste em ajustar um mo-
delo LPV com coeficientes polinomiais, de forma que a
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sua saida y se aproxime, segundo alguma norma pre-
viamente definida, da saida do sistema fisico nao linear.
A proposta é que o modelo seja discreto e esteja sob a
forma de uma série temporal, cujos coeficientes possam
ser polindmios dependentes do parametro variante ¢ =
(). Trata-se inicialmente apenas do caso SISO com um
Unico parametro variante. Para identificagdio do mode-
lo, considera-se que o sistema sob estudo esteja previa-
mente monitorado com sensores, de forma que os da-
dos temporais de suas entradas, saidas e do parametro
variante, ainda que continuos, sejam aquisitados segun-
do uma conveniente taxa de amostragem 7.

Do mesmo modo que em [24], adotou-se a classe
de modelos LPV discretos no tempo, parametrizados
da seguinte forma:

A(q,0)y(k) = B(q, O)u(k) (4)

em que ¢q é o operador de atraso, conforme definido
em (2), o qual conduz aos polinémios em fungao do
parametro variante, de acordo com:

A(q,0) =1+ a,(0)q + -+ a,(6)q" 5)

B(q,6) = b,(0)q" + b,(8)q" ™ + -+ b,,(0)qg"T™ 1 (6)

Além disso, considerou-se que o parametro varian-
te 8, embora continuo, tenha sido transformado em
uma fungdo do tempo discreto, ou seja, 6 = O(kT) =
0,, em que T € o periodo de amostragem.

Assim, por (4), (5) e (6), a estrutura do modelo
identificado, em forma de série temporal, pode ser
escrita como:

Ve ==Y — QY 4 Y, T

+ bluk—r + quk—r—l teeet bmuk—r—m+1 >

(7)

em quey, = y(kT) e u, = u(kT), n é a ordem do modelo
e representa o nimero de termos autorregressivos do
sinal de saida, m é o ndmero de termos da entrada, r
€ o atraso entre a saida atual e a entrada mais recente
considerada, eem quem +r-1 < n.

Considerou-se, ainda, que os coeficientes do modelo
acima possuam dependéncia polinomial em relagio ao

parametro variante 6 = 6,. Assim, Vi € {1,---,n} e NE N:

8+ rmcT (],

a; = a;(0) = @ + ;10 + a;,0% + -+ @y, 0. (8)

Da mesma forma, para os coeficientes da variavel
de entrada u, Vj € {1, ---, m} eM].E N:

by = b;(0) = B+ Bja0 + ;207 + -+ By 0" (9)

O parametro variante 0(¢) é considerado mensura-
vel, mas pode estar defasado da saida corrente, ou seja:

Yie = f(6—y), (10)

em que y € {0,---, n}. Usualmente, adota-se y = 1, ou
seja, a determinacdo da saida atual depende do valor
de 6 no instante anterior.

Embora tenha sido adotada a estrutura em (7) na
forma de série temporal, ¢ importante observar que
assim definida, possuird uma correspondéncia biuni-
voca com os modelos na forma em espago de esta-
do, bastando a utilizacio de uma realizacio canonica.
Desta forma, o cdlculo de autovalores de um modelo
podera ser determinado da forma usual, a partir da
equagao caracteristica:

det (A(O(t) — Al) = 0.

Tendo em vista os exemplos na secao 4, definem-
-se os vetores contendo as ordens dos polinémios em
cada coeficiente dos termos autorregressivos da saida
e dos termos da entrada, conforme (8) e (9):

[Ny N,

N = N,] € N"
M=[M M,

M,,] € N™ (1)

O numero ¢ de parametros a serem identificados
pode ser calculado por meio de:

{=n+m+YL N +XL M, (12)
Dado o sistema (4), estruturado conforme (5) a
(12), o Teorema 1 mostra como sao determinados os
coeficientes polinomiais a serem identificados, a par-
tir da resolucao de um sistema de equagoes lineares
e dos dados de entrada, de saida e do parametro va-
riante, todos medidos previamente no sistema fisico.

Teorema 1 - Considereu,,y, e0,,comk €{1,-,p},as
séries de dados medidos referentes, respectivamente,



a entrada, a saida e ao parametro variante do sistema
em (4). Os coeficientes polinomiais em (5) e (6) do
modelo LPV podem ser determinados por meio da
resolucdo do seguinte sistema de equagdes lineares:

(X Xa
=[Aa Aﬁ] X =B9 (13)
B
em que:
Yn—l,NI Yn—z,N2 Y;),N,,
Yn,NI n-1N, YI,N,,
4,= . ST b
Yp*l,Nl Yp*2,N2 },pfn,N,,
Un—r,M1 Un—r—l,Mz Un—r—m+l,Mm
Un—r+l,M1 n—r,M, Un—r—m+2,Mm
A, = s
Upfr,Ml p-r—=1,M, Upfrferl,Mm
X, =—[%0 Qi1 Ay, 0 A, |7,
Xg = [P0 P11 Bim, Bao Bmm, |7,
B=[Vn Ynt1 Yn+z yp]T € RP—1+1,

0p_,] € RPH,
6;_,] € RP*L,

Yip = yk[l Oy 91%—}/
Uk,p = uk[l Hk_y 9]%_.},

Demonstragdo: O sistema de equagbes lineares em
(13) decorre diretamente de (7). Para um determina-
do instante de tempo ¢ = kT, a equacao (7) pode ser
reescrita com o auxilio de (8) e (9) da seguinte forma:

Vi ==, +"'+a1,N19Nl Wi =

N,
_(an,O R czn,N,l 9 " )ykfn +
B+ + P, 0"y, +-
+(ﬂm,0 +eet ﬂm,Mm eMm )ukfrfmﬂ ’

de maneira que:

Vi = [Yk—l,Nl ”' }’kfn,N,, Uk—r,Ml e
o k=r-m+1,M,, .
Xﬂ

Considerando que k € {n,n + 1,---, p}, chega-se ao
sistema de equagoes lineares em (13).
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O sistema linear resultante do Teorema 1 ¢é
sobredeterminado. Varios métodos podem ser utilizados
para a sua solugdo, como a pseudo-inversa, escalonamen-
to e pivoteamento parcial, Gauss-Jordan e outros. Uma
alternativa consiste na utilizagio de métodos de progra-
magao nio linear, buscando a minimizagao de [|AX - B||,
que é um problema convexo [37]. Nao obstante neste
caso, por meio de transformagoes matemadticas, também
é possivel a utilizagao de métodos de programacao linear,
tais como os pacotes de resolugdo de LMI [38].

No caso de um sistema multivaridvel com » entra-
das e ¢ saidas, considera-se que cada uma das saidas
possa ser identificada independentemente, isto €, que
o problema original possa ser decomposto em um
conjunto de ¢ problemas MISO (do inglés, Multiple-
-Input Single-Output) com w entradas independentes.
Assim, para cada saida ¢, com i € {1,2,---,{}:

Ai(CIﬁ g)yi,k = Bl(qﬁg)ul,k + et Bw (qrg)um,kJ (14)

em que y,, representa a saida y, no instante ¢ = k7" Utili-
zando o Teorema 1 e desenvolvendo (14), de forma ana-
loga ao caso SISO, é possivel determinar um sistema de
equagoes lineares para calcular os coeficientes depen-
dentes do parametro variante  em A, B ,---, B .

Com multiplas entradas, o vetor M em (11) se
transforma em uma matriz, com cada linha apresen-
tando os graus das expansoes polinomiais dos termos
de cada entrada. O nimero de coeficientes £ a serem
identificados em (12), considerando um tnico para-
metro variante ¢ passara a ser:

§=n+m+ YL N +X2, Y0 M) (15)

3.1 indices de Ajuste

A avaliagdo do erro de ajuste entre o compor-
tamento do modelo e do sistema dinamico real é
realizado em duas partes. Na primeira, denominada
de erro de ajuste dos coeficientes, testa-se o erro no
calculo dos coeficientes durante o processo de identi-
ficacdo, a partir dos dados medidos na entrada e na
saida do sistema fisico. Utilizando (13) e quev = p -n

+ 1, define-se o vetor de erro de ajuste como:

¢ rmcre9
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ea 1 bl allxl T alvxv
€| b, —a,x, = —a,,x,

- >
eav bv alel _”._avv‘xv

e os indices de ajuste dos coeficientes como:

E

ally

(16)

2 2 2
a — —
J; = | —\/ea’l +lea| + o Fle| s

Ea . ea,v

Jo=|

©

= max{|

€ut1|>|Caz|> > }’ (17)

Observa-se que B € o vetor contendo as saidas medi-
das do sistema. Neste caso, avalia-se o erro para a gera-
¢ao da saida atual, considerando que as saidas medidas
anteriormente estejam disponiveis. Isto corresponde
a estimagdo um passo a frente da saida, ou seja, )7,(%,
conforme encontra-se ilustrado na Figura 1(a). Também
equivale a dizer que o modelo utiliza para a estimagdo as
medidas de saida anteriores do sistema em tempo real.
E importante observar que a utilizagio do modelo nes-
te formato nio se confunde com a estimacio recursiva,
uma vez que seus coeficientes ja estio determinados e
nao serao ajustados durante a operagao.

Tendo o modelo sido identificado, é possivel ava-
liar o erro de estimagdo independente do sistema, a
partir de uma simulacao, o que é bem mais rigoroso.
Adota-se um novo sinal de entrada para a validacao,
com as mesmas condigdes iniciais para o sistema e para
o modelo. Neste caso, considera-se o modelo de forma
autdénoma, isto €, que sua saida y, é gerada exclusiva-
mente a partir da entrada fornecida e da trajetéria do
parametro variante ¢ sem que haja a interferéncia da
saida y do sistema, conforme mostra a Figura 1(b).

Figura 1 - Simulagio das saidas estimadas: (a) um
passo a frente; (b) independente.

o, | i
»| Sistema Y

» Modeio

Vi1

(a)

10 - rmcT@],

Bk | ‘
»| Sistema

» Modelo

-V,

L >,

(b)

O erro para um horizonte de /& periodos de simu-
lacao é avaliado da seguinte forma:

es,l N _j>l
A A

e os indices de simulagao ou validagio por:
=

= max{

2 2
E + +ot

s

ex,l

es,Z

7= | | (18)

es,h

. E ) > 1€ a]sees

Jo =

€. ol (19)

Cabe observar que, utilizando condigdes iniciais,
sinais de entrada, taxa de amostragem e tamanho de
amostra iguais na simulagio um passo a frente e na

. . , a o s
simulacio livre, obtém-se J, <J, .

3.2 Expansao por Multiplos Parametros Variantes

Na situagdo em que ha multiplos paridmetros va-
riantes 6(t) = [0, (1) 0, (1) -+ 6,(1)]", a expansdo dos coe-
ficientes do modelo podera ser realizada em analogia
com (8) e (9), considerando também os termos cruza-
dos dos parametros variantes. Assim, para o caso de
dois parametros variantes, os coeficientes dos termos
de saida do modelo e, de forma equivalente para os
de entrada, teriam o seguinte formato:

2
a,=a,(6,0)=a,+a,0+a,,0 +--+

N; N;
+a, 6" + a,.,Nlﬂez oty o, +

2 2
+ai,2N,.+19192 +ai,2N,.+29102 +ai,2N,.+3‘91 0, +

Ni-1
+ o +al_1v,.(1v,.+3)01 o,
T2




Também neste caso, o nimero de parametros ¢ a
serem identificados é impactado de maneira signifi-
cativa pelo nimero de componentes d do vetor 60(t),
o que inviabiliza a metodologia proposta para d>1.
Para d=2:

§:n+m+Zn:N iiM +
i=1 i=1 j=1
n N(N ) & (M, ~1)
+Z +;2p”—
0,N <1
em que parai € {1, -, n}: 7’,«={1 N1’

0,M, <1
e parai € {1, W},jE{l,---,m}:pi’:{ =t
SoLM >

4. Identificacao de modelos LPV em
um sistema de suspensao de s de
automovel

Nesta se¢ao utiliza-se o modelo de suspensao ativa
de um automével, de quarta ordem, conforme [39]
apud [40]. Esse modelo, em cada subse¢io a seguir,
sofreu novas consideragdes em relagio ao parametro
variante, o que conduziu a diferentes graus de nao li-
nearidades e possibilitou uma analise mais detalhada
e estendida do método proposto.

A Figura 2 ilustra o modelo fisico da suspensio
ativa de 4 de automével. A constante m  representa
a massa amortecida de 4 do veiculo e m, a mas-
sa ndo amortecida de um conjunto roda e pneu. A
mola superior, com constante eldstica k e o amorte-
cedor, com constante de amortecimento ¢, repre-
sentam a suspensdo propriamente dita do veiculo.
A mola inferior, com constante de elasticidade k,
se refere ao amortecimento gerado pela deforma-
¢ao do pneu durante o deslocamento do veiculo
na pista. A perturbagido w(t) representa a entrada
de excitacio do modelo e consiste em um sinal de
velocidade vertical devido a irregularidades encon-
tradas na pista. J4 a entrada u(¢) representa a forga
de atuacdo produzida pelo mecanismo de suspen-
sao ativa. Esta tem por objetivo o isolamento das
vibragdes na massa m,, além de proporcionar maior
aderéncia do veiculo a pista.
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Figura 2 - Modelo fisico da suspensao ativa de %4
de automoével.

x(H=v,(5)

x,(0 k ¢ u(r)

1

xq.(t) = Vz(‘f)

(1) k

lv 0

Para a modelagem matematica do conjunto, as

variaveis de estado do sistema podem ser definidas
como em [39]:

x, : distancia entre as massas m, € m,, a partir da posi-
¢ao de equilibrio;

x,: distancia entre o eixo da roda e sua base, também
da posicao de equilibrio;

x,:velocidade vertical v (¢) da carroceria em relagao ao
referencial inercial;

x,: velocidade vertical v,(t) do eixo da roda em relagao
ao referencial inercial.

Partindo da defini¢ao apresentada dos estados, é pos-
sivel concluir que:

X = X4 — X3,

(20)
e ainda,

w(t) = %, + x4 0u X, = w(t) — xy, 21

Aplicando a segunda lei de Newton na massa m,
e considerando que haja uma dependéncia linear da
forca com a velocidade no amortecedor, por meio da
constante c:

mx, = kx, +cx, +u. (22)
De (20) em (22):
. k c c 1
Xy =—Xx, —— X, +—x, +—u(?). (23)
ml ml ml ml
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Aplicando a segunda lei de Newton na massa m,:

myx, = —kx, +k,x, + cx; —ex, —u(t),

.k , c c 1
Xy =——X +—x, +—x, ——x, ——u(?),
m2 m2 m2 2 m2

(24)

Além disso, considerou-se como variaveis de sai-
da a aceleragao da massa amortecida m, e o estado x,
[40]. Assim, é possivel escrever o modelo matematico
sob a forma de espago de estado, de acordo com:

[0 0o -1 1] 0 ]
X, 0 0 0 -1 || x 0 0
X k X 1 1
ol B0 - S = o +]  wo
X, m m o om || X m, 0
X, kK e c|x 1 0
L M, my, m, m, L
xl
- k c ¢ 1
wl |7— 00— — x| |—
=\ m m.m +| my |u(?). (25)
L)> X3
0 1 0 0 0
X4

em que y(t) = [y, )y, )]", y, () € a aceleragao da mas-
sa m, ey, (t) o deslocamento da massa m,. As saidas
do modelo, conforme [40], estdo relacionadas com a
aceleragao da massa amortecida x, e a deformacéio do
pneu, x,.

Os valores nominais dos parametros adotados [39]
foram: m, = 288,9 kg; m, = 28,58 kg; ¢ = 850%; k
= 10'000%;61{15 = 155,900%, Em todos os casos tra-
tados a frente, utilizou-se o periodo de amostragem
T=0,0025s e a duragao das simulacoes de 2 s, o que
totaliza 800 periodos. Neste artigo, os modelos foram
determinados com y=0 em (10).

No caso da suspensao ativa, considerando todos os
estados mensuraveis, foi adotada a lei de controle u(t)
= Kx(t), onde x(t) ¢ o vetor de estados, sabendo que o
valor de K empregado foi obtido de modo a manter
um compromisso entre o conforto dos passageiros e
a aderéncia do pneu a pista. O valor de apresentado
em [40] e utilizado neste trabalho foi:

K =10’x[-9,9997 —0,0002 +0,8325 —0,8461]

Para a simulacio dos dados a serem utilizados na
identificacdo, considerou-se que a base do pneu, em

12 « RmcT @],

contato com a pista, esteja submetida a uma perturba-
¢ao em velocidade w(t) da forma:
w(t) = w,() = 0,9sen(6pt) + 0,5sen(10pt) +
+ 0,75sen(8pt) + 0,6sen(20pt),

e para a validagao dos modelos, utilizou-se 0 mesmo

(26)

sinal que em [40], representado pela equagao:

w(t) = w (t) = 0,6sen(8pt) + 0,75sen(12pt) +
+ 0,9sen(16pt) + 0,5sen(20pt),

A Figura 3 apresenta os graficos dos sinais de en-

(27)

trada w(?) utilizados para a identificacao e validagao.

Figura 3 - Sinais de entrada para: (a) identificagio
w; (b) validagdo w,.

0 02 04 0.6 0.8 1 1.2 1.4 1.6 18 2
(a) tempo (s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2
(b) tempo (s)

4.1 Modelos LTI

Neste item e no seguinte, considerou-se que a mas-
sam, (0) =288,9 + 1000 e o sinal do parametro varian-
te O(t) = 0,5¢ para 0 < ¢ < 2s, na fase de identificagio.
Na validagdo do modelo, utilizou-se outro sinal para
o parametro variante, isto é, 6(f) = sen(0,5nt).Assim,
a massa apresentou valores na faixa de 288,9 < m,
< 388,9; o que poderia corresponder ao acréscimo de
passageiros e bagagens na massa ndo amortecida. Essa
consideracao é bastante conservadora em termos da
taxa de variagdo do parametro variante, levando em
conta um periodo de 2 segundos de simulagio. Ou seja,
uma taxa de variagdo do pardmetro um pouco maior
ao que pode acontecer na pratica, porém respeitando
que todo sistema fisico real é um sistema passa baixa.



As Figuras 4 e 5 mostram, respectivamente, as sai-
das do sistema nos casos de suspensao passiva e ativa
em funcao da excitagdo com o sinal de validagao w_ (t)

em, (0).

Figura 4 - Sinais de saida para a validacao do mo-
delo de suspensao passiva: (a) y; (b) y,

0 02 04 06 08 1 1.2 14 16 1.8 2

(a) tempo (s)

o 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
(b) tempo (s)

Figura 5 - Sinais de Saida para a validagao do mo-
delo de suspensao ativa: (a) y;; (b) y,.

0 0.2 0.4 0.6 0.8 1 1.2 14 16 1.8 2
(a) tempo (s)

0.1 T T T T T T T T T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2
(b) tempo (s)
Na Tabela 1, encontram-se as caracteristicas de
quatro modelos LTI que foram ajustados para as sa-

idas y, e y,, nos casos de suspensdo passiva e ativa,
lembrando que m, = m, (6).
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Tabela 1 - Caracteristicas dos modelos LTI

identificados.

passiva  passiva ativa ativa
yl yz yl y?
4/4/1 4/4/1 2/2/1 2/2/1
[0000] [0000] [00] [00]
[0000] [0000] [00] [00]

8 8 4 4
3,4697e-3 5,3165e-7 1,2436e-3 2,8967¢-8
6,0661e-4 8,3421e-8 1,6489¢e—4 2,5778e-9

38,274  1,0384e-2 1,5798e-1 1,0063e-5
4,2958  6,8445e—4 2,4096e-2 8,5410e-7
0,9952 0,9970 0,9994 0,9998

Vale mencionar [40] que a deformagao x, do pneu,
quando comparadas as saidas y, nas Figuras 4(b) e 5(b),
na suspensao ativa, a excursao foi aproximadamente o
dobro, enquanto a aceleragdo y, na Figura 5(a) da mas-
sam amortecida foi da ordem de 1% daquela ocorrida
para a suspensdo passiva na Figura 4(a).

Cabe observar na Tabela 1 que os elementos dos
vetores N e M em (11) foram nulos, o que correspon-
de ao ajuste dos modelos LTI. Os valores de 75 e J;
nessa tabela e nas seguintes correspondem ao custo
de estimagdo um passo a frente, conforme a Figura
1(a), utilizando a entrada de validagao w, (f). Também
¢é oportuno mencionar que os modelos LTT M2 e M4
das saidas y,, tanto para a suspensdo passiva como
para a ativa, tiveram ajustes satisfatérios, niao sen-
do mais essas saidas abordadas nos préximos casos.
Os graéficos dos modelos M2 e M4 sdo exatamente 0s
apresentados nas Figuras 4(b) e 5(b).

A Figura 6(a) apresenta as saidas y, do sistema, em
azul, e do modelo LTI M1 identificado, em vermelho,
para a suspensao passiva. Na Figura 6(b), ilustra-se o valor
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absoluto do erro entre estes sinais de saida. A Figura 7 é
a equivalente da Figura 6 para o caso da suspensao ativa.

Figura 6 - (a) Saidas y, do sistema (azul) e do mo-
delo LTI M1 (verm.) com suspensdo passiva; (b) valor
absoluto do erro entre estas saidas.

(@) tempoa (s)

modulo do erro
o w
r

-
T

(=]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2
(b) tempo (s)

o

Figura 7 - (a) Saidas y, do sistema (azul) e do mo-
delo LTI M3 (verm.) com suspensao ativa; (b) valor
absoluto do erro entre estas saidas.

0.1 T T T T T T T T T

0.05

0 02 04 06 08 1 12 14 16 18 2
(a) tempo (s)
0.03

modulo do erro

O/WW\’VW\/\/V\/\

0 02 0.4 08 0.8 1 12 14 16

115 2
&) tempo (s)
Cabe observar que os valores maximos dos erros
de ajuste apresentados nas Figuras 6(b) e 7(b) cor-
respondem aos respectivos valores de /. na Tabela 1
para os modelos M1 e M3.

14« rme1 (],

4.2 Modelos LPV com 1 parametro exogeno

Nesse caso, identificou-se os modelos lineares a para-
metros variantes (LPV) M5 e M6 na Tabela 2 que me-
lhor reproduziram, respectivamente, 0 comportamento
das saidas y, da suspensao passiva e ativa do automével,
considerando que a massa m, € variante no tempo.

Tabela 2 - Caracteristicas dos modelos identifica-
dosem 4.2 ¢ 4.3.

passiva ativa passiva passiva
4/4/1 2/2/1 4/4/1 4/4/1
[1000] [10] [0000] [1000]
[2022] [01] [0000] [1211]
15 6 8 21
5,6473e-4 3,1939¢e—4 3,2598e-3 3,5658¢—4
1,0453e-4 6,0073e-5 4,0924e—4 5,6716e-5
3,1698  9,1048e-2 39,014 2,6949
3,4643e-1 9,2476e-3  3,8391  2,4190e-1
0,9966 0,9995 1,0012 0,9980

Comparando os valores de J; dos modelos M5 e
M6 na Tabela 2 com seus correspondentes M1 e M3
na Tabela 1, verifica-se que seus ajustes sao signifi-
cativamente melhores, mas logicamente as custas do
aumento do nimero de parametros.

A Figura 8 apresenta os valores absolutos do erro
entre as safdas y, do sistema e dos modelos validados,
tanto para a suspensao passiva quanto para a suspen-
sao ativa. Vale observar que os valores maximos ab-
solutos desses erros nos graficos da Figura 8 corres-
pondem aos valores de J¢ na Tabela 2. Comparando
os graficos das Figuras 6(b) e 8(a), verifica-se que o
erro de ajuste do modelo LPV encontra-se na faixa
de 8% dos valores apresentados pelo modelo LTI. Da
mesma forma, para o caso da suspensdo ativa com a
saida y , comparando-se os graficos das Figuras 7(b)




e 8(b), verifica-se que o erro de ajuste do modelo LPV
apresenta valores menores que 40% daqueles do LTT.

Uma caracteristica importante observada nos mo-
delos LPV ¢é que seus coeficientes dependem de 6 e,
consequentemente, variam ao longo do tempo. Por
este motivo, observa-se que seus autovalores também
se alteram durante a simulacdo. Assim, como os mo-
delos sdo discretos, deseja-se que os autovalores A, =
A, (/) atendam a seguinte condigao:

max |A;(t 1.
ostszsl QOIS

a im de manter a estabilidade do modelo. Contudo, ve-
rificou-se que pequenas ultrapassagens nesse limite nem
sempre provocam desajustes entre a saida do modelo e
a da planta. Outro aspecto que merece ser citado se refe-
re ao aumento significativo do niimero de parametros a
serem ajustados nos modelos LPV. Por fim, observou-se
que o ajuste do modelo é bastante dependente da traje-
téria do parametro 6 e de sua velocidade.

Figura 8 - Valor absoluto do erro da saida y, para
os modelos LPV: (a) M5 e (b) M6.

=
=

suUsp. passiva

o
w

moddulo do erro
[=]
ro

©
-

=]

02 04 06 0.8 1 1.2 14 1.6 1.8 2

0
(a) tempo (s)
0.01 T T T T T T T T T
o
% susp. ativa
=]
=l
o 0.005
e}
=
-0
E
0 | L | | | | |
o 0.2 0.4 0.6 0.8 1 1.2 14 1.6 18 2
(b) tempo (s)

4.3 Modelos LPV com 2 parametros exdgenos

Neste caso, considerou-se que o sistema apresenta
dois parametros variantes exégenos independentes,
que parametrizam a massa m, € a constante eldstica
da mola, da seguinte forma:

m,(6,) = 288,9 + 1000,
k(6,) =9.000 + 2.0006,,
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sendo que, para0 < ¢ < 2s:

91 = Gl(t) = 015t1
0, = 0,(t) = sen(0,5mt).

Assim, os pardmetros m, e k variaram durante a

simulagao nos seguintes intervalos:
288,9 < m, < 388,9;
9.000 =< k < 11.000.

Os parametros 6, e 0, acima foram utilizados
durante a identificacdo. Na validacao, 0, = sen (0,5nt)
e 6,= 0,51

A Tabela 2 apresenta as caracteristicas de dois mo-
delos, M7 e M8, ajustados para a saida y, (¢), no caso da
suspensao passiva com a variacao simultanea de m, e k.
O modelo M7 é o do tipo LTI, enquanto o M8 é o LPV
para os mesmos dados. A Figura 9 apresenta a saida es-
timada pelo modelo M7, em vermelho, e a correspon-
dente saida do sistema. Observa-se na Tabela 2 que o
custo de ajuste J; de M8 foi menor que 7% do apresen-
tado por M7. Vale mencionar que a saida do modelo M8
coincide com a saida do sistema, em azul, na Figura 9.

A identificacdo para a suspensao ativa nio foi re-
alizada, pois o controlador k£ em [39] leva o sistema
em malha fechada para instabilidade com a variagao
simultanea de m, e k.

Figura 9 - (a) Saidas y, do sistema (azul) e do mo-
delo LTI M7 (verm.) com suspensao passiva; (b) valor
absoluto do erro entre estas saidas.

1.6 1.8
tempo (s)

modulo do erro
h

0 02 04 06 08 1 12 14 16 18 2
(k) tempo (s)
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4.4 Modelos LPV com 1 parametro endogeno

Neste caso, considerou-se a massa m, = 288,9 kg,
fixa em seu valor nominal, mas o modelo da mola foi
substituido por outro mais realista [41], que considera
a constante eldstica k variavel a partir de certa defor-
magao, conforme a Figura 10. Como a deformacao
da mola ¢ o estado x,, entdo k passa a ser dependente
dele, ou seja:

10* >, || < 0,08m

800+10°(|x1]|-0,08) N
|11 m’

k=k(x) =
' lx,] > 0,08 m

e (25) se transforma em um modelo nao linear Quasi-
-LPV, com 6 = x,.

Figura 10 - For¢a da mola da suspensao versus de-
formacao.

F M

3200 -
2400
1600 -

800 -

1
002 004 006 008 0,10 x,[m]

Na Figura 11, encontra-se ilustrado o comporta-
mento de x, e de k ao longo do tempo para o sinal
de entrada w. Quando a deformagao x, ultrapassa
0,08 m, caracterizada pelas linhas tracejadas na Figu-
ra 11(a), a constante elastica k da mola se torna varia-
vel, conforme a Figura 11(b).

Para este caso, foram determinados os modelos
M9 e M10 da Tabela 3, que se distinguem pela estru-
tura paramétrica e pela quantidade de parametros.
Os ajustes destes modelos LPV ndo foram tao bons
quanto os identificados nos casos anteriores.

16 « rmcT@],

Figura 11 - Evolu¢ao temporal para a entrada de
identificacdo: (a) estado x; (b) constante elastica da
mola.

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 b
(a) tempo (s)
10

o 0.2 04 0.6 0.8 1 1.2 14 1.6 1.8 2
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Tabela 3 - Caracteristicas dos modelos LPV identi-

ficados para a suspensao passiva em 4.4 e 4.5.

4/2/3 2/2/1 4/4/1 4/5/0

[5030] [22] [0312] [1000]
[3 4] [52] [4210] [00311]
21 15 45 94

4,1019 4,7566 8,0199  9,8109
1,7896 1,8838 2,8412  3,3706

57,719 61,040 52,349 63,038

6,4872  6,2101 7,5600  8,5038
1,0104 1,0067 1,1402  0,9294

A Figura 12 apresenta a resposta do sistema, em
azul, e a do modelo validado M9, em vermelho. En-
tretanto, observou-se que para a estimagao um passo
a frente, este modelo apresenta uma melhora signifi-
cativa em seus ajustes, pois suas respostas estimadas
praticamente coincidem com a do sistema, em azul,
nessa figura. A Tabela 3 confirma essa informacao a
partir dos valores de /; apresentados pelos mode-
los M9 e M10. Na Figura 12(b), ilustra-se a evolucao




temporal do maximo moédulo dos autovalores.
E interessante notar que em alguns intervalos de tem-
po, esse ultrapassa o valor unitario.

E oportuno observar que como o estado x, é o pré-
prio parametro variante, 6 serd alterado com a modifi-
cagao da entrada de identificacao para a de validagao.

4.5 Modelos LPV com 2 parametros enddgenos

Nesse caso, considerou-se que a suspensio seja
submetida a altas velocidades. Assim, um comporta-
mento mais realista para a for¢a gerada pelo amor-
tecedor é que apresente uma relagio cibica com a
velocidade de compressdao ou de expansao. O modelo
matematico deixa de ter um comportamento linear,
mas pode ser transformado na forma Quasi-LPV, con-
forme apresentado a seguir. A equagao (22) podera
ser reescrita como:

ke, + (%) +u=mx,. (27)
De (20):
(5)' = (%, = x,)" =] =3x7x, +3x,07 —x]. (28)
De (28) em (27):
X, =mix1 —i(3xf +25)x, +mi(3x32 +X;)x, +M. (29)
1 1 1 1

Desenvolvendo (24) de forma andloga, chega-se a:

. k c
X, =—x +—x, +—3x; +x])x; +
m, m, 2 (30)
¢ 2, .2 u(?)
——Gx; +x)x, —=
m, >

Utilizando (20), (21), (29) e (30), chega-se ao mo-
delo da suspensao ativa em alta velocidade:

0 0 -1 1
110 o 0 -1 X,
LI E g _faeed) Saeen) ||+
X3 m m m X3
Bk A i(3xf +x7) —i(3x32 +x7) "
L My m, i
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0
0 0
o 2 luy+] e 31)
m, 0
1 0
| m
k c s .. C s i 1
|:yl:|: ;1 0 —;1(3x4+x3) Z(3x3+x4) 5|, ;1 u(t)
200 0 0 5l
Xy

Pelo modelo em (31), verifica-se que os estados
x, € x, compdem as matrizes A e C da dinamica,
transformando-o em um modelo nao linear do tipo
Quasi-LPV.

Figura 12 - (a) Saidas do sistema (azul) e do mo-
delo M9 (verm.) com suspensao passiva; (b) Maximo
modulo dos autovalores durante a validagio.

0 0.2 0.4 0.6 0.8 1 1.2 14 16 1.8 2
(a) tempo (s)

0 02 0.4 06 08 1 12 14 1.6 18 2

(b) tempo (s)

A Figura 13 apresenta a evolugao temporal dos es-
tados x,e x, em face da aplicagao da entrada de vali-
dacio. Neste caso, estes estados serdo considerados os
parametros variantes do modelo LPV.

Na Tabela 3, encontram-se apresentadas as carac-
teristicas dos modelos M11 e M12, ajustados para este
problema. Embora M12 tenha um desempenho pior
em relacao a M11, no que se refere ao custo J;, ele
foi selecionado devido ao critério da parcimoénia, por
apresentar um numero de parametros significativa-
mente menor.
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Mesmo que o ajuste ndo tenha sido perfeito, ainda
assim é bem melhor que o do correspondente modelo
LTI, que possui J; =90,21. Esse modelo nao foi apre-
sentado nas tabelas, mas a Figura 14 mostra, a curva
de saida do sistema (azul), do modelo M11 (preto) e a

saida desse modelo LTI (vermelho).

Figura 13 - Evolugao do estado com a entrada de

validagao: (a) x,; (b) x,.

0 0.2 04 0.6 0.8 1 1.2 14 1.6 18 2
(a) tempo (s)

0 02 04 06 08 1 1.2 14 16 1.8 2
(b) tempo (s)

Figura 14 - Saidas y, da suspensdo passiva para o

sistema (azul), M11 (preto) e LTT (verm.).

5. Conclusoes

Neste artigo, apresentou-se um método multiva-
riavel para a identificagao de modelos LPV com coe-
ficientes polinomiais. Entre as aplicagbes do méto-
do, além da identificagdo propriamente dita, existe
a possibilidade de aproximar modelos nao lineares
por modelos LPV, com a finalidade de aplicacao de
técnicas de controle LPV. Os resultados foram ex-
plorados por meio de um exemplo relacionado com
a suspensao de um automoével. Diversos casos foram
abordados, com multiplos parametros variantes en-
dégenos e exégenos, procurando aproximar inclusi-
ve sistemas nao lineares do tipo Quasi-LPV. Algumas
contribui¢des em relagio as ideias de [24] foram im-
plementadas, como a extensao do método para sis-
temas multivariaveis, a obtencao da solugao a partir
de um lote de dados, a utilizacao de polindmios com
graus independentes por parametro, a possibilida-
de de realizar a defasagem temporal entre a saida
corrente e a entrada mais recente no modelo, bem
como a extensido do método para miltiplos parame-
tros variantes. Embora os ajustes dos modelos LPV
tenham sido significativamente melhores que os mo-
delos LTI, em contrapartida, hd também um grande
aumento do nimero de parametros a serem deter-
minados. Observou-se, ainda, que o grafico do maxi-
mo moédulo dos autovalores do modelo ao longo do
tempo é uma importante ferramenta para analisar a
qualidade do modelo identificado e de sua estrutura
paramétrica escolhida. Vale lembrar que a estimativa
um passo a frente apresentou excelentes resultados
para todos os modelos apresentados, embora haja
a dependéncia das medidas de saida do sistema em
tempo real. Por fim, verificou-se, principalmente na
aproximagao de sistema nao lineares, a forte depen-
déncia para o ajuste do modelo com a trajetéria do
parametro variante e com sua taxa de variagao.
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Apéndice A - Coeficientes dos modelos

Tabela A1l - Coeficientes dos modelos identificados.

1 -3,8899 -3,8875 -1,9650 -1,9657

2 5,7064 5,6979 9,9883e-1 9,9966e-1

3 -3,7426 -3,7329 2,0657e—4 2,4858e-3

4 9,2613e-1 9,2258e-1 1,8604e—4 —2,4850e-3
5 -1,4126e-2 2,4678e-3

6 1,2122e-1 -7,2040e-3

7 -1,9795e-1 7,0104e-3

8 9,0897¢-2 -2,2742¢-3

1 -3,8854 -1,9650 -3,9020 -3,8902

2 -1,6614e-6 —4,2788e-5 5,7371 1,5265e-6

3 5.6915 9.9900e-1 -3,7683 8,0307e-7

4 -3,7266 1,9014e—4 9,3315e-1 5,7055

5 9,2050e-1 2,6350e—4 1,3017e-1 -3,7401

6 4,7693e-2 -1,1792e—4 -3,1863e-1 9,2488e-1

7 —-1,0689e-2 2,4856e-1 3,7301e-2

8 2,3814e-3 -6,0094e-2 1,1522e-2

9 —4,4441e-2 1,1000e-2

10 -5,1441e-2 -3,8458e-2
11 3,1428e-2 -1,0157e-2
12 -7,0396e-3 —4,3035e-5
13 4,8188e-2 -3,5744e-2
14 -2,0730e-2 —4,7985e-6
15 4,6544e-3 -5,4108e-7
16 -3,3115e-2
17 -1,3655e-2
18 3,8937e-2

19 3,4275e-2

20 1,2319e-2
21 -1,4199e-2
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39 1,4140e-1
40 -6,5476e-1
41 1,9229
42 -27,293
43 —2,5943
44 -1,2012e-1
45 10,132

Os coeficientes dos modelos apresentados na Tabela Al, encontram-se dispostos conforme a ordem em
(7), isto é, a , Ay gy ooy b}y by, by, ... Como cada coeficiente possui diversos parametros, estes encontram-se na
sequéncia apresentada no item 3.2.
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