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RESUMO: Este artigo apresenta um método para a identificação ou 
ajuste de modelos LPV com coeficientes polinomiais. O método é aplicável 
a sistemas multivariáveis e para a aproximação do comportamento de 
sistemas não lineares. Discute-se também a extensão para múltiplos 
parâmetros variantes. Um modelo de suspensão de um automóvel foi 
empregado para ilustrar o método proposto, tendo sido ajustados modelos 
com parâmetros endógenos e exógenos.

ABSTRACT: This paper presents a method for the identification 
or tuning of LPV models with polynomial coefficients. The method 
is applicable to multivariable systems and to fit the behavior of 
nonlinear systems. It also presents an extension for multiple varying 
parameters. A Quarter-Car suspension model was used to illustrate 
the proposed method, and models with endogenous and exogenous 
parameters were adjusted.

PALAVRAS-CHAVE: Identificação de sistema; Sistemas não lineares; 
Sistemas LPV; Quasi-LPV; Modelos LPV.

KEYWORDS: System identification; Nonlinear systems; LPV systems; 
Quasi-LPV; LPV model.

1. Introdução

Em termos de controle de sistemas não 
lineares, entre as abordagens propos-
tas na literatura consta o clássico mé-

todo de gain scheduling, que faz uso dos métodos de 
projeto linear e suas ferramentas já consolidadas. 
Apesar de ser bastante empregado, este não garante 
a estabilidade e o desempenho fora dos pontos de 
operação considerados nos projetos lineares, espe-
cialmente nos casos em que a taxa de variação pa-
ramétrica é elevada. O fato de existir uma ligação 
entre a formulação de LMIs (do inglês Linear Matrix 
Inequalities) e a Teoria de Lyapunov tem permitido 
que os critérios de estabilidade e desempenho de-
senvolvidos para sistemas lineares sejam estendidos 
para sistemas lineares não estacionários, em especial 
para a classe geral de sistemas LPV (do inglês Linear 
Parameter Varying) [1].

O controle LPV, com estabilidade local ou global 
e desempenho garantidos em grandes envelopes do 
domínio de operação de sistemas multivariáveis, tem 
se apresentado como uma alternativa real ao clássico 

método de gain scheduling. Os ganhos dos controlado-
res LPV são automaticamente programados sem a ne-
cessidade de nenhum método ad hoc ou interpolação. 
Desde meados da década de 1990, as técnicas de con-
trole LPV evoluíram significativamente através de três 
métodos distintos [2, 3]: politópicos, de gradeamento e 
LFT (do inglês Linear Fractional Transformation). Nos mé-
todos politópicos, consideram-se os modelos de alguns 
pontos de operação, em princípio gerados pelos valo-
res extremos das coordenadas do vetor de parâmetros 
variantes. Os demais pontos de operação são obtidos a 
partir da combinação afim entre esses modelos extre-
mos, o que pode não ser verdadeiro. A desvantagem 
deste tipo de abordagem está relacionada também com 
o conservadorismo, que provavelmente incluirá uma 
gama de situações que, apesar de consideradas, podem 
não ocorrer na prática. Por outro lado, o problema de 
otimização a ser resolvido, inicialmente de dimensão 
infinita, se transforma em um problema com dimen-
são finita e igual ao número de vértices do politopo, 
uma vez que os demais modelos são determinados pela 
combinação afim dos modelos nesses vértices [4, 5, 6].
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Nos métodos de gradeamentos, testa-se o espaço 
de parâmetros variantes em um grid de valores, con-
siderando trajetórias realistas. A vantagem desse tipo 
de metodologia é a redução do conservadorismo em 
relação a abordagem politópica. Encontram-se na lite-
ratura algoritmos recursivos e por LMIs desse tipo de 
metodologia. Por outro lado, ela apresenta sérias res-
trições em relação ao número de parâmetros variantes, 
isto é, o esforço computacional cresce exponencial-
mente e inviabiliza o tratamento de sistemas LPV com 
mais de dois parâmetros variantes. Além disso, conta-
-se também com a hipótese de que o sistema sob análise 
seja relativamente bem-comportado, de maneira que 
sua dinâmica possa ser aproximada sem um grande 
aumento da densidade do grid [7, 8, 6].

No caso das abordagens LFT, o modelo LPV deve 
ser transformado em um modelo LFT. Com isso, as 
aplicações desta metodologia ficam restritas aos casos 
em que os modelos LPV apresentam funções espe-
cíficas dos parâmetros variantes, como por exemplo 
funções polinomiais dos parâmetros variantes. Uma 
vez obtido o modelo LFT, a síntese µ e outras podem 
ser empregadas para o cálculo do controlador [9, 10].

Uma grande variedade de aplicações de controle 
LPV foi inicialmente desenvolvida na área aeronáu-
tica, porém as aplicações estão se expandindo para 
diversas outras áreas, sendo validadas por experi-
mentos ou simulações de alta fidelidade, conforme 
apresentado em [11]. Um dos principais gargalos hoje 
na aplicação das técnicas de controle LPV é a ausência 
de métodos para obtenção de modelos LPV. Essa ne-
cessidade promoveu o interesse da comunidade cien-
tífica que atua na área de identificação de sistema, de 
forma a se conseguir produzir modelos de sistemas 
não lineares ou não estacionários, com o objetivo final 
de uso dos métodos de controle LPV existentes.

Os métodos de identificação de sistemas visam a 
obtenção de modelos a partir dos sinais medidos das 
entradas e saídas de uma planta sob estudo [12]. Ba-
sicamente, podem ser classificados em duas frentes, 
dependendo da estrutura do modelo: a identificação 
paramétrica e a não paramétrica. O caso da identi-
ficação não paramétrica envolve uma estrutura não 
determinada e, consequentemente, um número in-

determinado a priori de parâmetros. A identificação 
não paramétrica LPV tem basicamente se dividido em 
três principais abordagens: (a) da função de disper-
são; (b) da máquina de vetor de suporte de mínimos 
quadrados LS-SVM (do inglês Least Squares-Support 
Vector Machine) e (c) baseadas na configuração Baye-
siana, respectivamente [13, 14, 15] apud [16]. Quanto 
à estimação paramétrica, a estrutura a ser identificada 
encontra-se estabelecida previamente e um número 
determinado de parâmetros deverá ser ajustado.

Os métodos de identificação de sistemas LPV [17] 
podem ser classificados, conforme definido em [18], 
em duas principais áreas, de acordo com a represen-
tação matemática utilizada, LPV-IO (do inglês, Input-
-Output) e LPV-SS (do inglês, State Space).

Os métodos LPV-SS adotam uma representação 
discreta em espaço de estado ou sua equivalente LFR 
(do inglês, Linear Fractional Representation), que per-
mitem a representação de sistemas MIMO (do inglês, 
Multiple-Input Multiple-Output). Mais informações so-
bre as abordagens que fazem uso da estrutura LPV-SS 
podem ser obtidas em [18].

Este trabalho faz uso da representação LPV-IO, que 
utiliza como estrutura matemática os modelos discretos 
de séries temporais. Na maioria dos casos, faz uso da 
configuração de predição de erro LTI e geralmente é 
tratado somente para o caso SISO (do inglês, Single-
-Input Single-Output). Um modelo discreto na forma de 
séries temporais pode ser representado como:

1 0
( ) ( ) ( ) ( ) ( ) ( )

n m
i j

i j
i j

y k a q y k b q u k e kθ θ
= =

= − + +∑ ∑ (1)

em que 𝑞 é o operador de atraso no domínio do 
tempo, de forma que:

( ) = ( ) (2)

A variável 𝑒(k) é o ruído do processo, normalmente 
um ruído branco com média nula, n ≥ m, e os coeficien-
tes { }  e  e { }  e  são dependentes do parâmetro θ.

A estimação dos coeficientes ai e bj no modelo (1) 
pode ser realizada conforme definido em [18]:

(i) Abordagem por interpolação. Os métodos que 
utilizam essa abordagem são aqueles oriundos do 
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clássico conceito de gain-scheduling, caracterizados por 
considerar como ponto de operação valores específi-
cos do parâmetro variante que, uma vez congelado, 
determina a estrutura de predição de erro do siste-
ma LTI, permitindo a identificação de modelos locais.  
O modelo global é obtido através da interpolação dos 
modelos locais, conforme desenvolvido em [19, 20].

(ii) Abordagem por associação de conjuntos. Nesse 
caso, o ruído nos dados medidos é tratado como incer-
teza determinística e, em vez de uma estimativa direta 
dos coeficientes, é calculado um conjunto de valores 
viáveis deles, conforme apresentado em [21, 22]. Este 
conjunto viável representa os valores dos coeficientes 
que satisfazem a equação do modelo em (1) e a priori 
com um erro assumido menor ou igual ao do ruído 
nos dados medidos. Uma estimativa direta do coefi-
ciente é obtida calculando-se a média dos valores no 
conjunto viável. Geralmente, essa abordagem utiliza 
métodos de programação não convexa.

(iii) Abordagem por programação não linear.  
Os coeficientes { }  e  e { }  e  do modelo de séries 
temporais em (1) são estimados por meio de méto-
dos de programação não linear para minimizar o erro 
médio quadrático de predição [13, 23]. O objetivo é 
realizar uma melhor estimação que a dos métodos 
de regressão linear. Em alguns casos, isso é feito por 
meio de uma parametrização não linear:

em que 𝛼𝑖,0, 𝛼𝑖,1, 𝛽𝑗,0 e 𝛽𝑗,1 ∈ℝ e a variável Z é a saí-
da de uma rede neural artificial que utiliza como en-
tradas o vetor de saídas [(y(k) y(k-1) ⋯)]T, o vetor de 
entradas [(u(k) u(k-1) ⋯)]T e o vetor das medidas do 
parâmetro variante [(θ(k) θ(k-1) ⋯)]T do sistema a ser 
identificado. Esta abordagem, na maioria dos casos, 
utiliza um procedimento misto de programação line-
ar e não linear por meio de métodos de regressão li-
near combinados com redes neurais.

(iv) Abordagem por regressão linear. Emprega-se 
estruturas de modelos lineares de séries temporais 
discretas, como por exemplo o ARX (do inglês Au-
toregressive with Exogenous Inputs), bastante difundido 
na literatura de identificação de sistemas LTI, o qual 

faz parte do pacote de identificação de sistemas do 
software MATLAB®.

No caso LPV, os coeficientes { }  e  e { }  e  de (1) 
são funções polinomiais do parâmetro variante, como:

( ) = ,0 + ,  

( ) = ,0 + ,  

 

Dessa forma, faz uso do conceito de predição do 
erro LTI via mínimos quadrados, recursivos ou não, 
bem como variáveis instrumentais que conduzem a 
um ajuste melhor na presença de sinais com ruído. 
Como resultado, um modelo linear nos parâmetros é 
obtido por regressão linear, conforme o trabalho pre-
cursor de [24], abordagem utilizada neste trabalho.

Em [25] é proposto um método de identificação 
LPV-IO pela abordagem por regressão linear, que 
busca uma estrutura de modelo parcimoniosa, não 
paramétrica, que possa capturar a dependência des-
conhecida dos coeficientes { }  e  e { }  e  em fun-
ção do parâmetro variante em (1). Essa dependência 
pode variar entre as formas polinomial, racional ou 
ainda funções descontínuas. Para obter uma solução 
eficiente, é proposto no artigo o método LS-SVM, que 
conduz a uma construção do modelo sem as informa-
ções a priori de ordem e atraso do sistema em estu-
do. Originalmente desenvolvido como uma classe dos 
métodos de aprendizagem supervisionado, conforme 
apresentado em [26, 27] apud [25], onde é usado para 
obter a estrutura do modelo.

Em [28], um método baseado em IV (do inglês, 
Instrumental-Variable) para correção de viés foi desen-
volvido para a identificação de modelos SISO LPV-
-IO, do tipo ARX, a partir de medições da saída e do 
sinal do parâmetro variante, corrompidas por ruído. 
O processo de ruído associado à saída é considerado 
colorido, de média zero e com distribuição desconhe-
cida, enquanto as medições do sinal do parâmetro 
variante são afetadas por um ruído gaussiano bran-
co. O método proposto elimina o viés resultante dos 
métodos originários de LS (do inglês, Least-Squares) 
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quando negligenciam o ruído de medição existente 
no sinal do parâmetro variante. Assim, fornece uma 
estimativa consistente de modelos LPV com depen-
dência polinomial do parâmetro variante, cujo instru-
mento usado só precisa ser não correlacionado com o 
ruído que corrompe as observações de saída. Dessa 
forma, uma aproximação para o parâmetro variante 
sem ruído não precisa ser calculada.

O trabalho desenvolvido em [29] é uma análise do 
critério de predição de erro um passo à frente usado 
nos processos de identificação LPV, com o objetivo de 
obter novas funções de kernel [27, 30], a serem aplica-
das em processos de identificação LPV-IO de modelos 
não paramétricos do tipo Box-Jenkins.

Em [31] é apresentado um esquema de correção 
de viés para identificação de malha fechada de mo-
delos LPV-IO, pela abordagem de regressão, causado 
pela correlação entre o sinal de entrada que excita o 
processo e o ruído de saída. O algoritmo de identi-
ficação proposto fornece uma estimativa consistente 
dos parâmetros do modelo de malha aberta quando 
o sinal de saída e o sinal da variável do parâmetro va-
riante são corrompidos pelo ruído de medição.

Em [32] é apresentada uma identificação LPV-IO 
não paramétrica por regressão, usando LS-SVM para 
a estimação do ângulo de derrapagem de um auto-
móvel de passeio, em substituição do sensor usado 
em automóveis comerciais, devido ao seu alto custo.  
A problemática do artigo é inspirada em [21], que utili-
za o método de abordagem de associação de conjuntos, 
porém o artigo faz uso do método proposto em [25].

O trabalho de [33] apresenta um estudo de iden-
tificação LPV-IO através da abordagem de regressão, 
na busca de um modelo global com estrutura não 
paramétrica sem exigir muita informação a priori da 
ordem do modelo, usando o espaço de Hilbert por 
meio do RKHS (do inglês, Reproducing Kernel Hilbert 
Space), que corresponde a um problema de otimiza-
ção quadrática global diretamente solucionável com 
restrições de LMI, para a seleção da estrutura do mo-
delo parcimonioso a ser identificado.

Em [34] é apresentado um método LPV-IO por re-
gressão online, em que a análise da dinâmica é realiza-
da no domínio do parâmetro variante ou em função 

deste nomeado pelos autores de regressor causal, em 
vez do domínio do tempo. Como resultado, os coefi-
cientes a serem identificados são reestimados usando 
apenas dados presentes e, pelo menos, uma estima-
tiva anterior, ou seja, cada predição de coeficientes 
não depende necessariamente de sua estimativa no 
instante anterior, mas de uma de suas estimativas pas-
sadas em um instante em que seus regressores causais 
associados são semelhantes aos presentes. O critério 
proposto para medir essa semelhança é a norma das 
diferenças entre os regressores causais atuais e os pas-
sados. O método proposto apresentou baixo custo 
computacional para ajuste semelhante dos coeficien-
tes, em comparação aos métodos tradicionais offline.

Neste trabalho foram adotadas algumas ideias 
apresentadas em [24], tendo sido propostos os se-
guintes desenvolvimentos adicionais: extensão do 
método para sistemas multivariáveis; obtenção da so-
lução a partir de um lote de dados armazenados em 
vez da estimação pela forma recursiva; utilização de 
polinômios com graus independentes em cada coefi-
ciente do modelo; expansão com múltiplos parâme-
tros variantes e a realização da defasagem temporal 
no modelo entre a saída corrente e a entrada mais 
recente, que corresponde ao aumento do grau relati-
vo da função de transferência do modelo identificado. 
A técnica proposta foi também utilizada para aproxi-
mar modelos não lineares no formato Quasi-LPV por 
modelos LPV com coeficientes polinomiais. Para ilus-
trar o método proposto, explorou-se um sistema de 
suspensão de automóvel em diversas situações, com 
variações de parâmetros e não linearidades, aproxi-
mando-as por modelos LPV.

Com relação à estrutura deste trabalho, a seção 2 
apresenta as definições de sistemas LPV e Quasi-LPV, 
a seção 3 apresenta o método proposto com a exten-
são para sistema multivariável e expansão para múl-
tiplos parâmetros variantes. Na seção 4, encontra-se 
formulado o problema tratado para suspensão de ¼ 
de automóvel com diversas situações de não lineari-
dades, dependendo do tipo e da quantidade de pa-
râmetros variantes. Por fim, a seção 5 segue com as 
considerações finais e conclusões.
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2. Sistemas LPV/Quasi-LPV
Um sistema LPV ou Quasi-LPV é aquele cujas 

matrizes A, B, C e D na representação em espaço de 
estados não são constantes e variam em função de 
parâmetros exógenos ou endógenos ao sistema. Esses 
parâmetros, que alteram a dinâmica do sistema, são 
denominados parâmetros variantes θ. Um parâmetro 
variante exógeno é aquele que é externo ao sistema; 
já o endógeno é caracterizado como um parâmetro 
interno, representado por um dos estados do sistema 
ou uma função dele. Ambos os parâmetros variantes 
devem ser mensuráveis para que possam retratar o 
sistema. Dependendo dos parâmetros variantes uti-
lizados na representação do sistema, os modelos po-
dem ser classificados como LPV ou Quasi-LPV.

Um modelo LPV é reconhecido por ter todos os 
parâmetros variantes exógenos e mensuráveis. A se-
guir, apresenta-se a definição de modelos LPV.

Definição 1 – Modelo LPV [35], apud [36]: Dado 
um subconjunto compacto P ⊂ ℝd, Fp representa o 
operador que mapeia t ∈ ℝ+ em um vetor θ(t) ∈ P 
de parâmetros externos, cujas componentes são fun-
ções contínuas por partes ∀t ∈ ℝ+. Considere ainda 
as funções contínuas, A:P → ℝn×n, B:P → ℝn×ω 𝐶:𝑃 → 
ℝ𝜁×𝑛 e D:P → ℝ𝜁×w. Um modelo LPV de ordem n é 
definido como:

( ) ( ( )) ( ( )) ( )
.

( ) ( ( )) ( ( )) ( )
θ θ
θ θ

     
=     

     

x t A t B t x t
y t C t D t u t (3)

Pode-se acrescentar que o modelo LTV (do inglês, 
Linear Time Varying) é um caso particular de sistema 
LPV, em que as matrizes da dinâmica dependem do 
parâmetro variante θ(t) = t.

Um modelo Quasi-LPV é um modelo não linear que 
se assemelha ao modelo LPV em (3). Neste caso, o vetor 
θ(t) é composto por dois tipos de parâmetros variantes, 
os exógenos e os endógenos, ambos mensuráveis. 

Definição 2 – Modelo Quasi-LPV [36]: Seja θ(t) ∈ P 
tal que que θ(t)=[Ω(t)T z(t)T ]T, em que Ω(t) correspon-
de ao vetor das variáveis exógenas, de forma similar ao 
sistema LPV em (3), e z(t) corresponde ao vetor das va-
riáveis endógenas, contendo alguns estados do sistema 

ou funções destes, que interferem na dinâmica do siste-
ma. O modelo Quasi-LPV pode ser definido por:

em que o vetor de estados x(t)=[z(t)T η(t)T ]T e η(t) re-
presenta o vetor contendo os estados que não interfe-
rem nas matrizes do modelo.

O exemplo a seguir retrata uma manipulação ma-
temática para transformar um sistema não linear em 
um modelo Quasi-LPV. Os parâmetros variantes en-
dógenos considerados são os responsáveis pelas não 
linearidades do sistema e devem ser mensuráveis 
para caracterizar essa representação.

Conforme [2], a título de exemplificação, considere 
a planta não linear modelada pelas seguintes equações:

em que u é a entrada do sistema e considerando x1 e x2 
como os estados do modelo, pode-se definir x =   [x1 x2] 
como o vetor de estados. Assim, uma representação 
Quasi-LPV desse modelo não linear poderia ser

Essa representação pode não ser adequada, a me-
nos que x1 e x2  sejam mensuráveis e x1 ≠ 0 ∀t ∈ ℝ+ 
Nesse caso, existem somente os parâmetros variantes 
endógenos e η(t) = ∅. Assim x(t)=z(t) e z(t)=[x1 x2]

T.
Supondo que se tenha somente x1 mensurável, 

uma representação mais adequada poderia ser:

que permite reescrever a equação de forma que a ma-
triz de estado somente possua dependência na variá-
vel x1, ou seja, z(t) = x1 e η(t) = x2.

3. Método proposto
O problema aqui tratado consiste em ajustar um mo-

delo LPV com coeficientes polinomiais, de forma que a 
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sua saída ŷ se aproxime, segundo alguma norma pre-
viamente definida, da saída  do sistema físico não linear. 
A proposta é que o modelo seja discreto e esteja sob a 
forma de uma série temporal, cujos coeficientes possam 
ser polinômios dependentes do parâmetro variante θ = 
θ(t). Trata-se inicialmente apenas do caso SISO com um 
único parâmetro variante. Para identificação do mode-
lo, considera-se que o sistema sob estudo esteja previa-
mente monitorado com sensores, de forma que os da-
dos temporais de suas entradas, saídas e do parâmetro 
variante, ainda que contínuos, sejam aquisitados segun-
do uma conveniente taxa de amostragem T.

Do mesmo modo que em [24], adotou-se a classe 
de modelos LPV discretos no tempo, parametrizados 
da seguinte forma:

(4)

em que q é o operador de atraso, conforme definido 
em (2), o qual conduz aos polinômios em função do 
parâmetro variante, de acordo com: 

(5)

(6)

Além disso, considerou-se que o parâmetro varian-
te θ, embora contínuo, tenha sido transformado em 
uma função do tempo discreto, ou seja, θ ≔ θ(kT) = 
θk, em que T é o período de amostragem.

Assim, por (4), (5) e (6), a estrutura do modelo 
identificado, em forma de série temporal, pode ser 
escrita como:

1 1 2 2

1 2 1 1,
− − −

− − − − − +

= − − − − +
+ + + +





k k k n k n

k r k r m k r m

y a y a y a y
b u b u b u (7)

em que yk = y(kT) e uk = u(kT), n é a ordem do modelo 
e representa o número de termos autorregressivos do 
sinal de saída, m é o número de termos da entrada, r 
é o atraso entre a saída atual e a entrada mais recente 
considerada, e em que m + r - 1 ≤ n.

Considerou-se, ainda, que os coeficientes do modelo 
acima possuam dependência polinomial em relação ao 
parâmetro variante θ = θk. Assim, ∀i ∈ {1,⋯, n} e Ni∈ ℕ:

(8)

Da mesma forma, para os coeficientes da variável 
de entrada u, ∀j ∈ {1, ⋯, m} e Mj ∈ ℕ:

(9)

O parâmetro variante θ(t) é considerado mensurá-
vel, mas pode estar defasado da saída corrente, ou seja:

(10)

em que γ ∈ {0,⋯, n}. Usualmente, adota-se γ = 1, ou 
seja, a determinação da saída atual depende do valor 
de θ no instante anterior.

Embora tenha sido adotada a estrutura em (7) na 
forma de série temporal, é importante observar que 
assim definida, possuirá uma correspondência biuní-
voca com os modelos na forma em espaço de esta-
do, bastando a utilização de uma realização canônica. 
Desta forma, o cálculo de autovalores de um modelo 
poderá ser determinado da forma usual, a partir da 
equação característica:

Tendo em vista os exemplos na seção 4, definem-
-se os vetores contendo as ordens dos polinômios em 
cada coeficiente dos termos autorregressivos da saída 
e dos termos da entrada, conforme (8) e (9):

(11)

O número ξ de parâmetros a serem identificados 
pode ser calculado por meio de:

(12)

Dado o sistema (4), estruturado conforme (5) a 
(12), o Teorema 1 mostra como são determinados os 
coeficientes polinomiais a serem identificados, a par-
tir da resolução de um sistema de equações lineares 
e dos dados de entrada, de saída e do parâmetro va-
riante, todos medidos previamente no sistema físico.

Teorema 1 – Considere uk, yk e θk, com k ∈ {1,⋯, p}, as 
séries de dados medidos referentes, respectivamente, 
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à entrada, à saída e ao parâmetro variante do sistema 
em (4). Os coeficientes polinomiais em (5) e (6) do 
modelo LPV podem ser determinados por meio da 
resolução do seguinte sistema de equações lineares:

,
X

AX A A B
X

α
α β

β

 
 = =  

 
(13)

em que:

1 2

1 2

1 2

1, 2, 0,

, 1, 1,

1, 2, ,

,

 
n

n

n

n N n N N

n N n N N

p N p N p n N

Y Y Y

Y Y Y
A

Y Y Y

α

− −

−

− − −

 
 
 =  
 
  





   



1 2

1 2

1 2

, 1, 1,

1, , 2,

, 1, 1,

,

 
m

m

m

n r M n r M n r m M

n r M n r M n r m M

p r M p r M p r m M

U U U

U U U
A

U U U

β

− − − − − +

− + − − − +

− − − − − +

 
 
 =  
 
  





   



Demonstração: O sistema de equações lineares em 
(13) decorre diretamente de (7). Para um determina-
do instante de tempo t = kT, a equação (7) pode ser 
reescrita com o auxílio de (8) e (9) da seguinte forma:

1

11,0 1, 1( )N
k N ky yα α θ −= − + + − 

,0 ,( )n

n

N
n n N k nyα α θ −− + + +

1

11,0 1,( )M
M k ruβ β θ −+ + + + 

,0 , 1( ) ,m

m

M
m m M k r muβ β θ − − ++ + +

de maneira que:

1 11, , ,[
nk k N k n N k r My Y Y U− − −=  

1, ] .
mk r m M

X
U

X
α

β
− − +

 
 
 



Considerando que k ∈ {n, n + 1,⋯, p}, chega-se ao 
sistema de equações lineares em (13).

O sistema linear resultante do Teorema 1 é 
sobredeterminado. Vários métodos podem ser utilizados 
para a sua solução, como a pseudo-inversa, escalonamen-
to e pivoteamento parcial, Gauss-Jordan e outros. Uma 
alternativa consiste na utilização de métodos de progra-
mação não linear, buscando a minimização de ‖AX - B‖, 
que é um problema convexo [37]. Não obstante neste 
caso, por meio de transformações matemáticas, também 
é possível a utilização de métodos de programação linear, 
tais como os pacotes de resolução de LMI [38].

No caso de um sistema multivariável com ω entra-
das e ζ saídas, considera-se que cada uma das saídas 
possa ser identificada independentemente, isto é, que 
o problema original possa ser decomposto em um 
conjunto de ζ problemas MISO (do inglês, Multiple-
-Input Single-Output) com ω entradas independentes. 
Assim, para cada saída i, com i ∈ {1,2,⋯,ζ}:

(14)

em que yi,k representa a saída yi no instante t = kT. Utili-
zando o Teorema 1 e desenvolvendo (14), de forma aná-
loga ao caso SISO, é possível determinar um sistema de 
equações lineares para calcular os coeficientes depen-
dentes do parâmetro variante θ em Ai , B1 ,⋯, Bω.

Com múltiplas entradas, o vetor M em (11) se 
transforma em uma matriz, com cada linha apresen-
tando os graus das expansões polinomiais dos termos 
de cada entrada. O número de coeficientes ξ a serem 
identificados em (12), considerando um único parâ-
metro variante θ passará a ser:

(15)

3.1 Índices de Ajuste

A avaliação do erro de ajuste entre o compor-
tamento do modelo e do sistema dinâmico real é 
realizado em duas partes. Na primeira, denominada 
de erro de ajuste dos coeficientes, testa-se o erro no 
cálculo dos coeficientes durante o processo de identi-
ficação, a partir dos dados medidos na entrada e na 
saída do sistema físico. Utilizando (13) e que v = p - n 
+ 1, define-se o vetor de erro de ajuste como: 
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,1 1 11 1 1

,2 2 21 1 2

, 1 1

,

a

a

a v v v v

e b a x a x
e b a x a x

e b a x a x

ν ν

ν ν

ν ν

− − −   
   − − −   =
   
   

− − −    










e os índices de ajuste dos coeficientes como:

2 2 2

2
2 ,1 ,2 ,...  ,a

a a a a vJ E e e e= + += + (16)

,1 ,2 ,, , ... , max{ ,  }a
a a a a vJ E e e e

∞
∞ = = (17)

Observa-se que B é o vetor contendo as saídas medi-
das do sistema. Neste caso, avalia-se o erro para a gera-
ção da saída atual, considerando que as saídas medidas 
anteriormente estejam disponíveis. Isto corresponde 
à estimação um passo à frente da saída, ou seja, , 
conforme encontra-se ilustrado na Figura 1(a). Também 
equivale a dizer que o modelo utiliza para a estimação as 
medidas de saída anteriores do sistema em tempo real. 
É importante observar que a utilização do modelo nes-
te formato não se confunde com a estimação recursiva, 
uma vez que seus coeficientes já estão determinados e 
não serão ajustados durante a operação.

Tendo o modelo sido identificado, é possível ava-
liar o erro de estimação independente do sistema, a 
partir de uma simulação, o que é bem mais rigoroso. 
Adota-se um novo sinal de entrada para a validação, 
com as mesmas condições iniciais para o sistema e para 
o modelo. Neste caso, considera-se o modelo de forma 
autônoma, isto é, que sua saída ŷk é gerada exclusiva-
mente a partir da entrada fornecida e da trajetória do 
parâmetro variante θ sem que haja a interferência da 
saída y do sistema, conforme mostra a Figura 1(b).

Figura 1 - Simulação das saídas estimadas: (a) um 
passo à frente; (b) independente.

    

O erro para um horizonte de h períodos de simu-
lação é avaliado da seguinte forma:

e os índices de simulação ou validação por:

2 2 2

2
2 ,1 ,2 ,...  . ,s s s
s

s hJ E e e e+== + + (18)

,1 ,2 ,, ,... ,max{ ,  }s s ss h
sJ E e e e

∞
∞ = = (19)

Cabe observar que, utilizando condições iniciais, 
sinais de entrada, taxa de amostragem e tamanho de 
amostra iguais na simulação um passo à frente e na 
simulação livre, obtém-se 2 2

a sJ J≤ .

3.2 Expansão por Múltiplos Parâmetros Variantes

Na situação em que há múltiplos parâmetros va-
riantes θ(t) = [θ1 (t) θ2 (t) ⋯ θd(t)]

T, a expansão dos coe-
ficientes do modelo poderá ser realizada em analogia 
com (8) e (9), considerando também os termos cruza-
dos dos parâmetros variantes. Assim, para o caso de 
dois parâmetros variantes, os coeficientes dos termos 
de saída do modelo e, de forma equivalente para os 
de entrada, teriam o seguinte formato:

2
1 2 ,0 ,1 1 ,2 1

, 1 , 2 ,2 2

2 2
,2 1 2 ,2 1 2 ,

1

1 2 3

( 3

2 1 2

1
1 2

,
)

2

( , )
i i

i i i

i i i

i

i i

i i i i i

N N
i N i N i N

i N i N i N

N
N N

i

a a θ θ α α θ α θ

α θ α θ α θ

α θ θ α θ θ α θ θ

α θ θ

+

+ + +

−
+

= = + + + +

+ + + + +

+ + + +

+ +






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Também neste caso, o número de parâmetros ξ a 
serem identificados é impactado de maneira signifi-
cativa pelo número de componentes d do vetor θ(t), 
o que inviabiliza a metodologia proposta para d≫1. 
Para d=2:

,
1 1 1

,
,

1 1 1

,( 1)( 1)
2 2

n

i i j
i i

n
i j i ji i

i i j
i

m

j

i

m

j

n m N M

M MN N

ω

ω

ξ

γ ρ

= =

==

=

=

+

−−

= + + +

+ +

∑

∑

∑ ∑

∑ ∑

em que para i ∈ {1, ⋯, n}: 
0 , 1
1 , 1

γ
≤

=  >
i

i
i

N
N ;

e para i ∈ {1,⋯, w}, j ∈ {1, ⋯, m}: ,
,

,

0 , 1
1 , 1

ρ
≤=  >

i j
i j

i j

M
M

.

4. Identificação de modelos LPV em 
um sistema de suspensão de ¼ de 
automóvel

Nesta seção utiliza-se o modelo de suspensão ativa 
de um automóvel, de quarta ordem, conforme [39] 
apud [40]. Esse modelo, em cada subseção a seguir, 
sofreu novas considerações em relação ao parâmetro 
variante, o que conduziu a diferentes graus de não li-
nearidades e possibilitou uma análise mais detalhada 
e estendida do método proposto.

A Figura 2 ilustra o modelo físico da suspensão 
ativa de ¼ de automóvel. A constante m1 representa 
a massa amortecida de ¼ do veículo e m2 a mas-
sa não amortecida de um conjunto roda e pneu. A 
mola superior, com constante elástica k e o amorte-
cedor, com constante de amortecimento c, repre-
sentam a suspensão propriamente dita do veículo. 
A mola inferior, com constante de elasticidade kt, 
se refere ao amortecimento gerado pela deforma-
ção do pneu durante o deslocamento do veículo 
na pista. A perturbação w(t) representa a entrada 
de excitação do modelo e consiste em um sinal de 
velocidade vertical devido a irregularidades encon-
tradas na pista. Já a entrada u(t) representa a força 
de atuação produzida pelo mecanismo de suspen-
são ativa. Esta tem por objetivo o isolamento das 
vibrações na massa m1, além de proporcionar maior 
aderência do veículo à pista.

Figura 2 - Modelo físico da suspensão ativa de ¼ 
de automóvel.

Para a modelagem matemática do conjunto, as 
variáveis de estado do sistema podem ser definidas 
como em [39]: 
x1 : distância entre as massas m1 e m2, a partir da posi-
ção de equilíbrio; 
x2: distância entre o eixo da roda e sua base, também 
da posição de equilíbrio;
x3:velocidade vertical v1(t) da carroceria em relação ao 
referencial inercial; 
x4: velocidade vertical v2(t) do eixo da roda em relação 
ao referencial inercial.
Partindo da definição apresentada dos estados, é pos-
sível concluir que:

(20)

e ainda, 

(21)

Aplicando a segunda lei de Newton na massa 𝑚1 
e considerando que haja uma dependência linear da 
força com a velocidade no amortecedor, por meio da 
constante c:

11 3 1 .k xxm ucx += +  (22)

De (20) em (22):

3 1 3 4
1 1 1 1

1 ( ).k c cx x x x u t
m m m m

= − + + (23)
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Aplicando a segunda lei de Newton na massa 𝑚2:

2 4 1 2 3 4 ( ),tm x kx k x cx cx u t= − + + − −

4 1 2 3 4
2 2 2 2 2

1 ( ),tkk c cx x x x x u t
m m m m m

= − + + − − (24)

Além disso, considerou-se como variáveis de saí-
da a aceleração da massa amortecida m1 e o estado x2 
[40]. Assim, é possível escrever o modelo matemático 
sob a forma de espaço de estado, de acordo com:

1 1 1 1

2 2

1 1

2 2

2

3

4

2

3

4

2

0 0 1 1 0
00 0 0 1 0
110
0

( ) ( )

1 0

   
                        = + +                      

−

    
     

−



−

− − −







 t

k c c
m m m m

k k c c
m

x x
x x

u t w t
x x

m m m
x x

m

1

1 2

2
1 1 1 1

3

4

10

0 1 0
).

0
(

0

x
y x

u t
y x

x

k c c
m m m m

 
          = +              

 

−

 
(25)

em que y(t) = [y1 (t) y2 (t)]
T, y1 (t) é a aceleração da mas-

sa m1 e y2 (t) o deslocamento da massa m2. As saídas 
do modelo, conforme [40], estão relacionadas com a 
aceleração da massa amortecida x3 e a deformação do 
pneu, x2.

Os valores nominais dos parâmetros adotados [39] 
foram: m1 = 288,9 kg; m2 = 28,58 kg;  k 
=  Em todos os casos tra-
tados à frente, utilizou-se o período de amostragem 
T=0,0025s e a duração das simulações de 2 s, o que 
totaliza 800 períodos. Neste artigo, os modelos foram 
determinados com γ=0 em (10).

No caso da suspensão ativa, considerando todos os 
estados mensuráveis, foi adotada a lei de controle u(t) 
= Kx(t), onde x(t) é o vetor de estados, sabendo que o 
valor de K empregado foi obtido de modo a manter 
um compromisso entre o conforto dos passageiros e 
a aderência do pneu à pista. O valor de  apresentado 
em [40] e utilizado neste trabalho foi:

310 [ 9,9997 0,0002 0,8325 0,8461]= × − − + −K

Para a simulação dos dados a serem utilizados na 
identificação, considerou-se que a base do pneu, em 

contato com a pista, esteja submetida a uma perturba-
ção em velocidade w(t) da forma:

w(t) = wi(t) = 0,9sen(6pt) + 0,5sen(10pt) +
	 + 0,75sen(8pt) + 0,6sen(20pt),

(26)

e para a validação dos modelos, utilizou-se o mesmo 
sinal que em [40], representado pela equação:

w(t) = wv(t) = 0,6sen(8pt) + 0,75sen(12pt) +
	 + 0,9sen(16pt) + 0,5sen(20pt),

(27)

A Figura 3 apresenta os gráficos dos sinais de en-
trada w(t) utilizados para a identificação e validação.

Figura 3 - Sinais de entrada para: (a) identificação 
wi; (b) validação wv.

4.1 Modelos LTI

Neste item e no seguinte, considerou-se que a mas-
sa m1 (θ) = 288,9 + 100θ e o sinal do parâmetro varian-
te θ(t) = 0,5t para 0 ≤ t ≤ 2s, na fase de identificação. 
Na validação do modelo, utilizou-se outro sinal para 
o parâmetro variante, isto é, θ(t) = sen(0,5πt).Assim, 
a massa  apresentou valores na faixa de 288,9 ≤ m1 
≤ 388,9; o que poderia corresponder ao acréscimo de 
passageiros e bagagens na massa não amortecida. Essa 
consideração é bastante conservadora em termos da 
taxa de variação do parâmetro variante, levando em 
conta um período de 2 segundos de simulação. Ou seja, 
uma taxa de variação do parâmetro um pouco maior 
ao que pode acontecer na prática, porém respeitando 
que todo sistema físico real é um sistema passa baixa.
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As Figuras 4 e 5 mostram, respectivamente, as saí-
das do sistema nos casos de suspensão passiva e ativa 
em função da excitação com o sinal de validação wv (t) 
e m1 (θ).

Figura 4 - Sinais de saída para a validação do mo-
delo de suspensão passiva: (a) y1; (b) y2.

Figura 5 - Sinais de Saída para a validação do mo-
delo de suspensão ativa: (a) y1; (b) y2.

Na Tabela 1, encontram-se as características de 
quatro modelos LTI que foram ajustados para as sa-
ídas y1 e y2, nos casos de suspensão passiva e ativa, 
lembrando que m1 = m1 (θ).

Tabela 1 - Características dos modelos LTI 
identificados.

Modelos
M1 M2 M3 M4

susp. passiva passiva ativa ativa

saída y1 y2 y1 y2

n/m/r 4/4/1 4/4/1 2/2/1 2/2/1

N [0 0 0 0] [0 0 0 0] [0 0] [0 0]

M [0 0 0 0] [0 0 0 0] [0 0] [0 0]

ξ 8 8 4 4

2
aJ 3,4697e–3 5,3165e–7 1,2436e–3 2,8967e–8

∞
aJ 6,0661e–4 8,3421e–8 1,6489e–4 2,5778e–9

2
sJ 38,274 1,0384e–2 1,5798e–1 1,0063e–5

∞
sJ 4,2958 6,8445e–4 2,4096e–2 8,5410e–7

max|| 0,9952 0,9970 0,9994 0,9998

Vale mencionar [40] que a deformação x2 do pneu, 
quando comparadas às saídas y2 nas Figuras 4(b) e 5(b), 
na suspensão ativa, a excursão foi aproximadamente o 
dobro, enquanto a aceleração y1 na Figura 5(a) da mas-
sa m1 amortecida  foi da ordem de 1% daquela ocorrida 
para a suspensão passiva na Figura 4(a).

Cabe observar na Tabela 1 que os elementos dos 
vetores N e M em (11) foram nulos, o que correspon-
de ao ajuste dos modelos LTI. Os valores de 2

aJ e ∞
aJ  

nessa tabela e nas seguintes correspondem ao custo 
de estimação um passo à frente, conforme a Figura 
1(a), utilizando a entrada de validação wv (t). Também 
é oportuno mencionar que os modelos LTI M2 e M4 
das saídas y2, tanto para a suspensão passiva como 
para a ativa, tiveram ajustes satisfatórios, não sen-
do mais essas saídas abordadas nos próximos casos.  
Os gráficos dos modelos M2 e M4 são exatamente os 
apresentados nas Figuras 4(b) e 5(b).

A Figura 6(a) apresenta as saídas y1 do sistema, em 
azul, e do modelo LTI M1 identificado, em vermelho, 
para a suspensão passiva. Na Figura 6(b), ilustra-se o valor 
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absoluto do erro entre estes sinais de saída. A Figura 7 é 
a equivalente da Figura 6 para o caso da suspensão ativa.

Figura 6 - (a) Saídas y1 do sistema (azul) e do mo-
delo LTI M1 (verm.) com suspensão passiva; (b) valor 
absoluto do erro entre estas saídas.

Figura 7 - (a) Saídas y1 do sistema (azul) e do mo-
delo LTI M3 (verm.) com suspensão ativa; (b) valor 
absoluto do erro entre estas saídas.

Cabe observar que os valores máximos dos erros 
de ajuste apresentados nas Figuras 6(b) e 7(b) cor-
respondem aos respectivos valores de ∞

sJ na Tabela 1 
para os modelos M1 e M3.

4.2 Modelos LPV com 1 parâmetro exógeno

Nesse caso, identificou-se os modelos lineares a parâ-
metros variantes (LPV) M5 e M6 na Tabela 2 que me-
lhor reproduziram, respectivamente, o comportamento 
das saídas y1 da suspensão passiva e ativa do automóvel, 
considerando que a massa m1 é variante no tempo. 

Tabela 2 - Características dos modelos identifica-
dos em 4.2 e 4.3.

Modelos
M5 M6 M7 M8

susp. passiva ativa passiva passiva

n/m/r 4/4/1 2/2/1 4/4/1 4/4/1

N [1 0 0 0] [1 0] [0 0 0 0] [1 0 0 0]

M [2 0 2 2] [0 1] [0 0 0 0] [1 2 1 1]

ξ 15 6 8 21

2
aJ 5,6473e–4 3,1939e–4 3,2598e–3 3,5658e–4

∞
aJ 1,0453e–4 6,0073e–5 4,0924e–4 5,6716e–5

2
sJ 3,1698 9,1048e–2 39,014 2,6949

∞
sJ 3,4643e–1 9,2476e–3 3,8391 2,4190e–1

max|| 0,9966 0,9995 1,0012 0,9980

Comparando os valores de 2
sJ dos modelos M5 e 

M6 na Tabela 2 com seus correspondentes M1 e M3 
na Tabela 1, verifica-se que seus ajustes são signifi-
cativamente melhores, mas logicamente às custas do 
aumento do número de parâmetros.

A Figura 8 apresenta os valores absolutos do erro 
entre as saídas y1 do sistema e dos modelos validados, 
tanto para a suspensão passiva quanto para a suspen-
são ativa. Vale observar que os valores máximos ab-
solutos desses erros nos gráficos da Figura 8 corres-
pondem aos valores de ∞

sJ na Tabela 2. Comparando 
os gráficos das Figuras 6(b) e 8(a), verifica-se que o 
erro de ajuste do modelo LPV encontra-se na faixa 
de 8% dos valores apresentados pelo modelo LTI. Da 
mesma forma, para o caso da suspensão ativa com a 
saída y1, comparando-se os gráficos das Figuras 7(b)  
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e 8(b), verifica-se que o erro de ajuste do modelo LPV 
apresenta valores menores que 40% daqueles do LTI.

Uma característica importante observada nos mo-
delos LPV é que seus coeficientes dependem de θ e, 
consequentemente, variam ao longo do tempo. Por 
este motivo, observa-se que seus autovalores também 
se alteram durante a simulação. Assim, como os mo-
delos são discretos, deseja-se que os autovalores λi = 
λi (t) atendam a seguinte condição:

a fim de manter a estabilidade do modelo. Contudo, ve-
rificou-se que pequenas ultrapassagens nesse limite nem 
sempre provocam desajustes entre a saída do modelo e 
a da planta. Outro aspecto que merece ser citado se refe-
re ao aumento significativo do número de parâmetros a 
serem ajustados nos modelos LPV. Por fim, observou-se 
que o ajuste do modelo é bastante dependente da traje-
tória do parâmetro θ e de sua velocidade.

Figura 8 - Valor absoluto do erro da saída y1 para 
os modelos LPV: (a) M5 e (b) M6.

4.3 Modelos LPV com 2 parâmetros exógenos

Neste caso, considerou-se que o sistema apresenta 
dois parâmetros variantes exógenos independentes, 
que parametrizam a massa m1 e a constante elástica  
da mola, da seguinte forma:

sendo que, para 0 ≤ t ≤ 2 s: 

Assim, os parâmetros m1 e k variaram durante a 
simulação nos seguintes intervalos:

288,9 ≤ 𝑚1 ≤ 388,9;
9.000 ≤ 𝑘 ≤ 11.000.

Os parâmetros θ1 e θ2 acima foram utilizados 
durante a identificação. Na validação, θ1 = sen (0,5πt) 
e θ2 = 0,5t. 

A Tabela 2 apresenta as características de dois mo-
delos, M7 e M8, ajustados para a saída y1 (t), no caso da 
suspensão passiva com a variação simultânea de m1 e k. 
O modelo M7 é o do tipo LTI, enquanto o M8 é o LPV 
para os mesmos dados. A Figura 9 apresenta a saída es-
timada pelo modelo M7, em vermelho, e a correspon-
dente saída do sistema. Observa-se na Tabela 2 que o 
custo de ajuste 2

sJ de M8 foi menor que 7% do apresen-
tado por M7. Vale mencionar que a saída do modelo M8 
coincide com a saída do sistema, em azul, na Figura 9.

A identificação para a suspensão ativa não foi re-
alizada, pois o controlador k em [39] leva o sistema 
em malha fechada para instabilidade com a variação 
simultânea de m1 e k.

Figura 9 - (a) Saídas y1 do sistema (azul) e do mo-
delo LTI M7 (verm.) com suspensão passiva; (b) valor 
absoluto do erro entre estas saídas.
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4.4 Modelos LPV com 1 parâmetro endógeno

Neste caso, considerou-se a massa m1 = 288,9 kg, 
fixa em seu valor nominal, mas o modelo da mola foi 
substituído por outro mais realista [41], que considera 
a constante elástica k variável a partir de certa defor-
mação, conforme a Figura 10. Como a deformação 
da mola é o estado x1, então k passa a ser dependente 
dele, ou seja:

e (25) se transforma em um modelo não linear Quasi-
-LPV, com 𝜃 = 𝑥1.

Figura 10 - Força da mola da suspensão versus de-
formação.

Na Figura 11, encontra-se ilustrado o comporta-
mento de x1 e de k ao longo do tempo para o sinal 
de entrada wi. Quando a deformação x1 ultrapassa 
0,08 m, caracterizada pelas linhas tracejadas na Figu-
ra 11(a), a constante elástica k da mola se torna variá-
vel, conforme a Figura 11(b).

Para este caso, foram determinados os modelos 
M9 e M10 da Tabela 3, que se distinguem pela estru-
tura paramétrica e pela quantidade de parâmetros. 
Os ajustes destes modelos LPV não foram tão bons 
quanto os identificados nos casos anteriores.

Figura 11 - Evolução temporal para a entrada de 
identificação: (a) estado x1; (b) constante elástica da 
mola.

Tabela 3 - Características dos modelos LPV identi-
ficados para a suspensão passiva em 4.4 e 4.5.

Modelos
M9 M10 M11 M12

n/m/r 4/2/3 2/2/1 4/4/1 4/5/0
N [5 0 3 0] [2 2] [0 3 1 2] [1 0 0 0]
M [3 4] [5 2] [4 2 1 0] [0 0 3 1 1]
x 21 15 45 24

2
aJ 4,1019 4,7566 8,0199 9,8109

∞
aJ 1,7896 1,8838 2,8412 3,3706

2
sJ 57,719 61,040 52,349 63,038

∞
sJ 6,4872 6,2101 7,5600 8,5038

max|| 1,0104 1,0067 1,1402 0,9294

A Figura 12 apresenta a resposta do sistema, em 
azul, e a do modelo validado M9, em vermelho. En-
tretanto, observou-se que para a estimação um passo 
à frente, este modelo apresenta uma melhora signifi-
cativa em seus ajustes, pois suas respostas estimadas 
praticamente coincidem com a do sistema, em azul, 
nessa figura. A Tabela 3 confirma essa informação a 
partir dos valores de 2

aJ  apresentados pelos mode-
los M9 e M10. Na Figura 12(b), ilustra-se a evolução 
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temporal do máximo módulo dos autovalores.  
É interessante notar que em alguns intervalos de tem-
po, esse ultrapassa o valor unitário.

É oportuno observar que como o estado x1 é o pró-
prio parâmetro variante, θ será alterado com a modifi-
cação da entrada de identificação para a de validação.

4.5 Modelos LPV com 2 parâmetros endógenos

Nesse caso, considerou-se que a suspensão seja 
submetida a altas velocidades. Assim, um comporta-
mento mais realista para a força gerada pelo amor-
tecedor é que apresente uma relação cúbica com a 
velocidade de compressão ou de expansão. O modelo 
matemático deixa de ter um comportamento linear, 
mas pode ser transformado na forma Quasi-LPV, con-
forme apresentado a seguir. A equação (22) poderá 
ser reescrita como:

3
11 1 3.( )k x u mc xx + =+   (27)

De (20):

3 3 3 2 2 3
1 4 3 4 4 3 4 3 3( ) ( ) 3 3 .x x x x x x x x x= − = − + − (28)

De (28) em (27):

2 2 2 2
3 1 4 3 3 3 4 4

1 1 1 1

( )(3 ) (3 ) .k c c u tx x x x x x x x
m m m m

= − + + + + (29)

Desenvolvendo (24) de forma análoga, chega-se a:

2 2
4 1 2 4 3 3

2 2 2

2 2
3 4 4

2 2

(3 )

( )(3 )

= + + + +

− + −



tkk cx x x x x x
m m m

c u tx x x
m m

(30)

Utilizando (20), (21), (29) e (30), chega-se ao mo-
delo da suspensão ativa em alta velocidade:

2 2 2 2
4 3 3 4

1 1 1

2 2 2 2
4 3 3 4

2 2 2
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3 3
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Pelo modelo em (31), verifica-se que os estados 
x3 e x4 compõem as matrizes A e C da dinâmica, 
transformando-o em um modelo não linear do tipo 
Quasi-LPV.

Figura 12 - (a) Saídas  do sistema (azul) e do mo-
delo M9 (verm.) com suspensão passiva; (b) Máximo 
módulo dos autovalores durante a validação.

A Figura 13 apresenta a evolução temporal dos es-
tados  x3 e x4 em face da aplicação da entrada de vali-
dação. Neste caso, estes estados serão considerados os 
parâmetros variantes do modelo LPV.

Na Tabela 3, encontram-se apresentadas as carac-
terísticas dos modelos M11 e M12, ajustados para este 
problema. Embora M12 tenha um desempenho pior 
em relação a M11, no que se refere ao custo 2

sJ , ele 
foi selecionado devido ao critério da parcimônia, por 
apresentar um número de parâmetros significativa-
mente menor.
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Mesmo que o ajuste não tenha sido perfeito, ainda 
assim é bem melhor que o do correspondente modelo 
LTI, que possui 2 90,21.=sJ  Esse modelo não foi apre-
sentado nas tabelas, mas a Figura 14 mostra, a curva 
de saída do sistema (azul), do modelo M11 (preto) e a 
saída desse modelo LTI (vermelho). 

Figura 13 - Evolução do estado com a entrada de 
validação: (a) x3; (b) x4.

Figura 14 - Saídas y1 da suspensão passiva para o 
sistema (azul), M11 (preto) e LTI (verm.).

5. Conclusões
Neste artigo, apresentou-se um método multiva-

riável para a identificação de modelos LPV com coe-
ficientes polinomiais. Entre as aplicações do méto-
do, além da identificação propriamente dita, existe 
a possibilidade de aproximar modelos não lineares 
por modelos LPV, com a finalidade de aplicação de 
técnicas de controle LPV. Os resultados foram ex-
plorados por meio de um exemplo relacionado com 
a suspensão de um automóvel. Diversos casos foram 
abordados, com múltiplos parâmetros variantes en-
dógenos e exógenos, procurando aproximar inclusi-
ve sistemas não lineares do tipo Quasi-LPV. Algumas 
contribuições em relação às ideias de [24] foram im-
plementadas, como a extensão do método para sis-
temas multivariáveis, a obtenção da solução a partir 
de um lote de dados, a utilização de polinômios com 
graus independentes por parâmetro, a possibilida-
de de realizar a defasagem temporal entre a saída 
corrente e a entrada mais recente no modelo, bem 
como a extensão do método para múltiplos parâme-
tros variantes. Embora os ajustes dos modelos LPV 
tenham sido significativamente melhores que os mo-
delos LTI, em contrapartida, há também um grande 
aumento do número de parâmetros a serem deter-
minados. Observou-se, ainda, que o gráfico do máxi-
mo módulo dos autovalores do modelo ao longo do 
tempo é uma importante ferramenta para analisar a 
qualidade do modelo identificado e de sua estrutura 
paramétrica escolhida. Vale lembrar que a estimativa 
um passo à frente apresentou excelentes resultados 
para todos os modelos apresentados, embora haja 
a dependência das medidas de saída do sistema em 
tempo real. Por fim, verificou-se, principalmente na 
aproximação de sistema não lineares, a forte depen-
dência para o ajuste do modelo com a trajetória do 
parâmetro variante e com sua taxa de variação.
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Apêndice A - Coeficientes dos modelos

Tabela A1 - Coeficientes dos modelos identificados.

M1 M2 M3 M4
1 –3,8899 –3,8875 –1,9650 –1,9657
2 5,7064 5,6979 9,9883e–1 9,9966e–1
3 –3,7426 –3,7329 2,0657e–4 2,4858e–3
4 9,2613e–1 9,2258e–1 1,8604e–4 –2,4850e–3
5 –1,4126e–2 2,4678e–3
6 1,2122e–1 –7,2040e–3
7 –1,9795e–1 7,0104e–3
8 9,0897e–2 –2,2742e–3

M5 M6 M7 M8
1 –3,8854 –1,9650 –3,9020 –3,8902
2 –1,6614e-6 –4,2788e–5 5,7371 1,5265e–6
3 5.6915 9.9900e–1 –3,7683 8,0307e–7
4 –3,7266 1,9014e–4 9,3315e–1 5,7055
5 9,2050e–1 2,6350e–4 1,3017e–1 –3,7401
6 4,7693e–2 –1,1792e–4 –3,1863e–1 9,2488e–1
7 –1,0689e–2 2,4856e–1 3,7301e–2
8 2,3814e–3 –6,0094e–2 1,1522e–2
9 –4,4441e–2 1,1000e–2

10 –5,1441e–2 –3,8458e–2
11 3,1428e–2 –1,0157e–2
12 –7,0396e–3 –4,3035e–5
13 4,8188e–2 –3,5744e–2
14 –2,0730e–2 –4,7985e–6
15 4,6544e–3 –5,4108e–7
16 –3,3115e–2
17 –1,3655e–2
18 3,8937e–2
19 3,4275e–2
20 1,2319e–2
21 –1,4199e–2
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M9 M10 M11 M12
39 1,4140e–1
40 –6,5476e–1
41 1,9229
42 –27,293
43 –2,5943
44 –1,2012e–1
45 10,132

Os coeficientes dos modelos apresentados na Tabela A1, encontram-se dispostos conforme a ordem em 
(7), isto é, a1, a2, a3, ..., b1, b2, b3, .... Como cada coeficiente possui diversos parâmetros, estes encontram-se na 
sequência apresentada no item 3.2.
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