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ABSTRACT: This paper presents a method for the identification
or tuning of LPV models with polynomial coefficients. The method
is applicable to multivariable systems and to fit the behavior of
nonlinear systems. It also presents an extension for multiple varying
parameters. A Quarter-Car suspension model was used to illustrate
the proposed method, and models with endogenous and exogenous
parameters were adjusted.
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1. Introduction

n terms of controlling nonlinear systems, the

classic gain scheduling approach, which uses

linear design methods and their already con-
solidated tools, is among the approaches proposed
in the literature. Although it is widely used, it does
not guarantee stability and performance outside the
operating points considered in linear designs, espe-
cially in cases where the parametric variation rate is
high. The fact that there is a connection between the
formulation of Linear Matrix Inequalities (LMIs) and
the Lyapunov Theory has allowed the stability and
performance criteria developed for linear systems to
be extended to non-stationary linear systems, espe-
cially for the general class of Linear Parameter Va-
rying (LPV) systems [1].

LPV control, with local or global stability and per-
formance guaranteed in large envelopes of the opera-
ting domain of multivariable systems, has been presen-
ted as a real alternative to the classic gain scheduling
approach. LPV controller gains are automatically
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programmed without the need for any ad hoc method
or interpolation. Since the mid-1990s, LPV control
techniques have evolved significantly through three
distinct methods [2, 3], namely: polytopic approach,
grid-based approach, and Linear Fractional Trans-
formation (LFT). In polytopic approaches, models of
some operating points are considered, in principle ge-
nerated by the extreme values of the coordinates of the
vector of varying parameters. The remaining opera-
ting points are obtained from the affine combination
of these extreme models, which may not be true. The
disadvantage of this type of approach is also related
to conservatism, which will probably include a range
of situations that, despite being considered, may not
occur in practice. On the other hand, the optimization
problem to be solved, initially of infinite dimension,
becomes a problem with finite dimension and equal to
the number of vertices of the polytope, since the other
models are determined by the affine combination of
the models at these vertices [4, 5, 6].

In grid-based approaches, the space of varying

parameters is tested in a grid of values, considering
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realistic trajectories. The advantage of this type of
methodology is the reduction of conservatism in re-
lation to the polytopic approach. Recursive and LMI
algorithms of this type of methodology are found in
the literature. On the other hand, it presents serious
restrictions in relation to the number of varying
parameters, that is, the computational effort grows
exponentially and makes it impossible to treat LPV
systems with more than two varying parameters.
In addition, it also assumes that the system under
analysis is relatively well-behaved, so that its dyna-
mic can be approximated without a large increase in
the grid density [7, 8, 6].

In the case of LFT approaches, the LPV model
must be transformed into an LFT. Therefore, appli-
cations of this methodology are restricted to cases in
which the LPV models present specific functions of
the varying parameters, such as polynomial functions
of the varying parameters. Once the LFT model has
been obtained, u synthesis and others can be used to
calculate the controller [9, 10].

A wide variety of LPV control applications were
initially developed in the aeronautical area, but
applications are expanding to several other are-
as, and are validated by experiments or high-fide-
lity simulations, as presented in [11]. One of the
main bottlenecks today in the application of LPV
control techniques is the lack of methods for ob-
taining LPV models. This need has promoted the
interest of the scientific community working in the
area of system identification, in order to be able to
produce models of nonlinear or nonstationary sys-
tems, with the ultimate objective of using existing
LPV control methods.

System identification methods aim to obtain mo-
dels from the measured signals of the inputs and
outputs of a plant under study [12]. Basically, they
can be classified into two fronts, depending on the
structure of the model: parametric and nonparame-
tric identification. The case of nonparametric iden-
tification involves an undetermined structure and,
consequently, an a priori undetermined number of
parameters. Nonparametric LPV identification has
basically been divided into three main approaches:
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(a) the scattering function; (b) the least-squares su-
pport vector machine (LS-SVM), and (c) the one
based on the Bayesian configuration, respectively
[13, 14, 15] as cited in [16]. Regarding parametric
prediction, the structure to be identified is previou-
sly established and a certain number of parameters
must be adjusted.

The methods for identifying LPV systems [17] can
be classified, as defined in [18], into two main areas,
according to the mathematical representation used,
LPV-10 (Input-Output) and LPV-SS (State Space).

LPV-SS methods adopt a discrete representation
in state space or its equivalent LFR, which allows
the representation of Multiple-Input Multiple-Ou-
tput (MIMO) systems. More information about the
approaches that use the LPV-SS structure can be
found in [18].

This work uses the LPV-10 representation, which
utilizes discrete time series models as its mathema-
tical structure. In most cases, it uses the LTI error
prediction configuration and is generally treated
only for the Single-Input Single-Output (SISO) case.
A discrete model in the form of time series can be
represented as:

(k) == a,(0)q y(k) + b, (0)q u(k) +e(k) (1)
i=1 =0
where q is the delay operator in the time domain,
so that:

q?y(k) = y(k —p) (2)

The variable e(k) is the process noise, usually a
white noise with zero mean, n > m and the coefficients
{a;}, and {bj};ioare dependent on the parameter 0
The prediction of the coefficients ¢; and b, in the mo-
del (1) can be performed as defined in [18]:

(1) Interpolation approach. The methods that use
this approach are those originating from the classic
concept of gain-scheduling, characterized by consi-
dering as the operating point specific values of the
varying parameter that, once frozen, determines the
error prediction structure of the LTT system, allowing

the identification of local models. The global model is



obtained through the interpolation of local models, as
developed in [19, 20].

(i1) Set association approach. In this case, the noi-
se in the measured data is treated as deterministic
uncertainty and, instead of a direct estimate of the
coefficients, a set of their feasible values is calculated,
as presented in [21, 22]. This feasible set represents
the values of the coefficients that satisfy the model
equation in (1) and a priori with an assumed error
less than or equal to that of the noise in the measu-
red data. A direct estimate of the coefficient is obtai-
ned by calculating the mean of the values in the fe-
asible set. This approach generally uses non-convex
programming methods.

(iii) Nonlinear programming approach. The co-
efficients {a;}i-; and {bj}:.r;o of the time series model
in (1) are estimated using nonlinear programming
methods to minimize the mean squared prediction
error [13, 23]. The objective is to achieve a better
prediction than that of linear regression methods.
In some cases, this is done through a non-linear
parameterization:

ai(f) = aip + ainZ
b;(0) = Bjp + BjaZ

where Ay &, ,8}.‘0 and ﬁm eR and the variable Z is
the output of an artificial neural network that uses as
inputs the output vector [(y(k) y(k-1) ---)]", the input
vector [(u(k) u(k-1) ---)]* and the vector of the measu-
res of the varying parameter [(4(k) O(k-1) ---)]” of the
system to be identified. This approach, in most cases,
uses a mixed procedure of linear and non-linear pro-
gramming through linear regression methods combi-
ned with neural networks.

(iv) Linear regression approach. Structures of li-
near models of discrete time series are used, such as
Autoregressive with Exogenous Inputs (ARX), wide-
ly used in the literature on the identification of LTI
systems, which is part of the system identification pa-
ckage of the MATLAB® programming and numeric
computing platform.

In the LPV case, coefficients {a;}-; and {bj};nzo of
(1) are polynomial functions of the varying parame-

ter, such as:
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a;(0) = a;o +
p=1

M;

b;j(6) = Bjo + Z Bj 0"
p=1

ai,pgp

In this way, it uses the concept of predicting the
LTT error via Least-Squares (LS), recursive or not, as
well as instrumental variables that lead to a better ad-
justment in the presence of noisy signals. As a result,
a linear model in the parameters is obtained by linear
regression, according to the precursor work of [24],
an approach used in this work.

In[25] a method of LPV-10 identification is propo-
sed using the linear regression approach, which seeks
a parsimonious, nonparametric model structure that
can capture the unknown dependence of the coetfi-
cients and as a function of the varying parameter in
(1). This dependence can vary between polynomial,
rational, or even discontinuous functions. To obtain
an efficient solution, the article proposes the LS-SVM
method, which leads to a construction of the model
without the a priori information of order and delay of
the system under study. It was originally developed as
a class of supervised learning methods, as presented
in [26, 27] as cited in [25], where it is used to obtain
the model structure.

In [28], a method based on Instrumental Varia-
ble (IV) for bias correction was developed to identify
SISO LPV-10 models, of the ARX type, from measu-
rements of the output and the signal of the varying
parameter, corrupted by noise. The noise process
associated with the output is considered colored, of
zero mean and with unknown distribution, while the
measurements of the signal of the varying parameter
are affected by a white Gaussian noise. The proposed
method eliminates the bias resulting from the metho-
ds originating from LS when they neglect the mea-
surement noise existing in the signal of the varying
parameter. Thus, it provides a consistent estimate of
LPV models with polynomial dependence of the va-
rying parameter, whose instrument used only needs
to be uncorrelated with the noise that corrupts the
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output observations. In this way, an approximation
for the noise-free varying parameter does not need to
be calculated.

The work developed in [29] is an analysis of the
one-step-ahead error prediction criterion used in
LPV identification processes, with the aim of obtai-
ning new kernel functions [27, 30] to be applied in
LPV-1O identification processes of nonparametric
Box-Jenkins models.

In [31] a bias correction scheme for closed-loop
identification of LPV-IO models is presented, using
the regression approach, caused by the correlation
between the input signal that excites the process and
the output noise. The proposed identification algori-
thm provides a consistent estimate of the open-loop
model parameters when the output signal and the va-
riable signal of the variable parameter are corrupted
by measurement noise.

A nonparametric LPV-10 identification by regres-
sion is presented in [32] , using LS-SVM to estimate
the skid angle of a passenger car, replacing the sensor
used in commercial vehicles, due to its high cost. The
problem of the article is inspired by [21], which uses
the set association approach method, but the article
uses the method proposed in [25].

The work of [33] presents a study of LPV-10 iden-
tification through the regression approach, in the se-
arch for a global model with a nonparametric struc-
ture without requiring much a priori information
about the model order, using Hilbert space through
Reproducing Kernel Hilbert Space (RKHS), which
corresponds to a global quadratic optimization pro-
blem directly solvable with LMI constraints, for the
selection of the structure of the parsimonious model
to be identified.

An LPV-10 method by online regression is presen-
ted in [34], in which the analysis of the dynamics is
performed in the domain of the varying parameter
or as a function of it named by the authors as cau-
sal regressor, instead of the time domain. As a result,
the coefficients to be identified are re-estimated using
only present data and at least one previous estimate,
that is, each coefficient prediction does not necessari-
ly depend on its estimate at the previous instant, but
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on one of its past estimates at an instant when its as-
sociated causal regressors are similar to the present
ones. The proposed criterion for measuring this si-
milarity is the norm of the differences between the
current and past causal regressors. The proposed
method presented low computational cost for similar
adjustment of the coefficients, compared to traditio-
nal offline methods.

In this work, some ideas presented in [24] were
adopted, and the following additional developments
were proposed: extension of the method to multiva-
riate systems; obtainment of the solution from a ba-
tch of stored data instead of estimate by the recursive
form; use of polynomials with independent degrees
in each model coefficient; expansion with multiple va-
rying parameters and the realization of the time lag in
the model between the current output and the most
recent input, which corresponds to the increase in the
relative degree of the transfer function of the iden-
tified model. The proposed technique was also used
to approximate nonlinear models in the Quasi-LPV
format by LPV models with polynomial coefficients.
To illustrate the proposed method, a car suspension
system was explored in several situations, with para-
meter variations and nonlinearities, approximating
them by LPV models.

Regarding the structure of this work, section 2
presents the definitions of LPV and Quasi-LPV sys-
tems, section 3 presents the proposed method with
the extension to multivariable system and expansion
to multiple varying parameters. Section 4 presents
the problem addressed for a quarter-car suspension
model with several nonlinear situations, depending
on the type and quantity of variable parameters.
Finally, section 5 presents the final considerations
and conclusions.

2. LPV/Quasi-LPV Systems

An LPV or Quasi-LPV system is one whose matri-
ces A, B, C and D in the state space representation are
not constant and vary depending on parameters that
are exogenous or endogenous to the system. The-

se parameters, which alter the system dynamic, are



called variable parameters 6. An exogenous variable
parameter is one that is external to the system; an
endogenous parameter is characterized as being in-
ternal to the system, represented by one of the states
of the system or a function of it. Both variable para-
meters must be measurable in order to portray the
system. Depending on the variable parameters used
in the system representation, the models can be clas-
sified as LPV or Quasi-LPV.

An LPV model is recognized by having all exoge-
nous and measurable varying parameters. The follo-
wing is the definition of LPV models.

Definition 1 — LPV Model [35], as cited in [36]:
Given a compact subset P © R, F, represents the ope-
rator that maps ¢ € R* onto a vector 0(¢) of external
parameters, whose components are continuous func-
tions by parts V¢ € R* Consider also the continuous
functions, A:P — R"™" B:P — R"™®, C:P — R and
D:P — R**. An LPV model of order n is defined as:

{56(1)}{/1(9(0) B(é’(t))}[X(t)} 3)
0] [CO@®) DO ] u) |

It can be added that the Linear Time Varying
(LTV) model is a particular case of an LPV system, in
which the dynamic matrices depend on the varying
parameter 0(f) = ¢.

A Quasi-LPV model is a nonlinear model that re-
sembles the LPV model in (3). In this case, the vector
0(t) is composed of two types of varying parameters,
exogenous and endogenous, both measurable.

Definition 2 — Quasi-LPV Model [36]: Be 06(/) € P
such that 6@)=[Q()" z()" ]', where Q(t) corresponds
to the vector of exogenous variables, similarly to the
LPV system in (3), and z(t) corresponds to the vec-
tor of endogenous variables, containing some states
of the system or functions of these, which interfere
in the system dynamic. The Quasi-LPV model can be
defined by:

z(t) An(g(t)) Alz(g(t)) B1(9(t)) z(t)

| = A21(9(f)) Azz(a(f)) Bz(e(f)) n|,
ACIG))

y(©) C,(60))  Dpo®)|lu®
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where the state vector x(¢)=[z(¢)" ()" ]" and %(t) re-
presents the vector containing the states that do not
interfere in the model matrices.

The following example depicts a mathematical
manipulation to transform a nonlinear system into a
Quasi-LPV model. The endogenous varying parame-
ters considered are responsible for the nonlinearities
of the system and must be measurable to characterize
this representation.

According to [2], as an example, consider the non-
linear plant modeled by the following equations:

X, = sen(xy) + x,
Xy = X% + U

where u is the input of the system and considering
x,and x, as the model states, x = [x, x,] can be defined
as the state vector. Thus, a Quasi-LPV representation
of this nonlinear model could be

p= e (0
This representation may not be adequate unless x,
and x, are measurable and x, # 0 V¢ € R* In this case,
there are only the endogenous varying parameters
and n(¢) = @. Thus x(t)=z(t) and z()=[x, x,]".
Assuming that one has only x, measurable, a more
adequate representation could be:

. [sen(x)/x; 1 0
X = 0 Nk + [ 1] u,

which allows rewriting the equation so that the sta-
te matrix only has dependence on the variable x,, that

is, z({) = x, and 5(t) = x,.

3. Method proposed

The problem addressed here consists of adjusting
an LPV model with polynomial coefficients, so that its
output j approximates, according to some previously
defined standard, the output of the nonlinear physi-
cal system. The proposal is that the model be discrete
and in the form of a time series, whose coefficients can
be polynomials dependent on the varying parameter
0 = 0(t). Initially, we are dealing only with the SISO
case with a single varying parameter. To identify the
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model, it is assumed that the system under study is
previously monitored with sensors, so that the tem-
poral data of'its inputs, outputs and the varying para-
meter, even if continuous, are acquired according to a
convenient sampling rate 7.

In the same way as in [24], the class of discrete-time
LPV models was adopted, parameterized as follows:

A(q,0)y(k) = B(q, 0)u(k) (4)

where ¢ is the delay operator, as defined in (2),
which leads to polynomials as a function of the va-
rying parameter, according to:

A(q,0) =1+ a,(0)q + -+ a,(0)q" (5)

B(q,0) = b, (0)q" + b, (0)q" + - + bm(g)qr+m—1 (6)

In addition, it was considered that the varying
parameter ¢, although continuous, was transformed
into a function of discrete time, that is, 6 :=0(kT) = 0,,
where 7' is the sampling period.

Thus, by (4), (5) and (6), the structure of the iden-
tified model, in the form of a time series, can be writ-
ten as:

Ve ==Y — Y~ 4 Y, t
+bu,, +byuy A by,

(7)

where y, = y(kT) and u, = u(kT) n, is the order of
the model and represents the number of autore-
gressive terms of the output signal, m is the number
of input terms, m is the delay between the current
output and the most recent input considered, and
m+r-1=<mn.

It was also considered that the coefficients of the
model above have polynomial dependence in relation
to the varying parameter 6 = ¢,. Thus, Vi € {1, m}e
N€Nand :

a; = a;(0) = @+ @10 + @;,0% + -+ a0V (8)

Similarly, for the coefficients of the input variable u,
vj€{l, -, m} and M]E N:

by = b;(0) = Bjo + 20 + 207+ + B 0™ (9)

8+ rmcT (],

The varying parameter (/) is considered measu-
rable, but may be out of phase with the current ou-
tput, that is:

Yie = f(6—y), (10)

where y € {0,---, n}. Usually, is adopted, that is, the
determination of the current output depends on the
value of 0 at the previous instant.

Although the structure in (7) was adopted in the
form of a time series, it is important to note that, defi-
ned in this way, it will have a one-to-one corresponden-
ce with the models in the form of state space, requiring
only the use of a canonical realization. In this way, the
calculation of eigenvalues of a model can be determi-
ned in the usual way, from the characteristic equation:

det (A(O(t) — Al) = 0.

Considering the examples in section 4, the vectors
containing the orders of the polynomials in each coe-
fficient of the autoregressive terms of the output and
of the input terms are defined, as per (8) and (9):

[Ny

N= N2
M = [M,

M,

N,] € N"

M,,] € N™ (1)

The number ¢ of parameters to be identified can
be calculated by means of:
{=n+m+YL N +XL M, (12)
Given the system (4), structured as per (5) to (12),
Theorem 1 shows how the polynomial coefficients to
be identified are determined, from the resolution of a
system of linear equations and the input, output and
varying parameter data, all previously measured in
the physical system.

Theorem 1 — Consider u,, y, and 6,, with k£ € {1,---,
p}, the measured data series referring, respectively,
to the input, the output and the varying parameter
of the system in (4). The polynomial coefficients in
(5) and (6) of the LPV model can be determined by
solving the following system of linear equations:

X(Z
AX =[ 4, Aﬂ}{Xﬂ}zB, (13)



where:
n-1,N, Yn—z,N2 o Yo,N,,
_ Yn,Nl n-1,N, YI,N,,
Aa - . . >
Yp*LNn Yp*Z,Nz Yp*n,N
n—r,M, Un—r—],M2 Un—r—m+],Mm
Un—r+l,M1 n-r,M, n—-r—-m+2,M,,
4, = , ,
Upfr,Ml p-r—=1,M, Upfrfmﬂ,Mm
X, =—[%0 Qi1 Ay, 0 A, |7,
— T
Xg = [P0 P11 Bim, Bao BT,
B = [ mn Yn+1 Yn+2 yp]T € Rp—n+1’

0p_,] € RPH,
6;_,] € RP*L,

Yip = yk[l Oy 91%—}/
Uk,p = uk[l Hk_y 9]%_.},

Demonstration: The system of linear equations in
(13) comes directly from (7). For a given instant of
time ¢ = kT, equation (7) can be rewritten with the
help of (8) and (9) as follows:

N
Ve=—(@o+tayy 07y =
N,
_(an,O t+-- +an,Nn9 ! )yk—n +

+(181,0 +et :Bl,Ml 9M1 )uk—r +oe

Mm
+(ﬂm,0 teeet m,M, 0 )uk—r—m+l >

so that:
e = [Yk—l,Nl e ),k—n,N,, Uk—r,Ml o
o k—=r—m+1,M,, :
Xﬁ

Considering that k € {n, n + 1,---, p}, we arrive at
the system of linear equations in (13).

The linear system resulting from Theorem I is
overdetermined. Several methods can be used to
solve it, such as pseudo-inverse, partial scaling and
pivoting, Gauss-Jordan and others. An alternative is
to use nonlinear programming methods, seeking the
minimization of ||AX - B||, which is a convex problem
[37]. However, in this case, by means of mathemati-
cal transformations, it is also possible to use linear
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programming methods, such as LMI resolution pa-
ckages [38].

In the case of a multivariable system with » inputs
and ¢ outputs, it is assumed that each of the outputs
can be identified independently, that is, that the ori-
ginal problem can be decomposed into a set of { Mul-
tiple-Input Single-Output (MISO) problems with @
independent inputs. Thus, for each output 7, with 7
€{1,2,&

Ai(Q; H)yi,k = Bl(CIlg)ul,k + et Bw(qlg)ua),kr (14)

Where y,, represents the output y, at instant { = kT
Using Theorem 1 and developing (14), analogously to
the SISO case, it is possible to determine a system of
linear equations to calculate the coefficients depen-
dent on the varying parameter in A, B, ,-, B .

With multiple inputs, the vector M in (11) is trans-
formed into a matrix, with each row presenting the
degrees of the polynomial expansions of the terms of
each input. The number of coefficients ¢ to be iden-
tified in (12), considering a single varying parameter
6, will be:

{=n+m+ T N+ X2, YT M) (15)

3.1 Adjustment Indices

The assessment of the adjustment error between the
behavior of the model and the real dynamic system is
carried out in two parts. In the first part, called the coe-
fficient adjustment error, the error in the calculation of
the coefficients during the identification process is tes-
ted, based on the data measured at the input and output
of the physical system. Using (13) and thatv =p-n + 1,
the adjustment error vector is defined as:

€. bl —apXy T4 X,
2 b, —ayx; —-—a,x,

. - . P
ell,V bv _alel _“._avvxv

and the adjustment indexes of the coefficients as:

-

E “de [+ e [, (16)

a

e

a,l

e

a,v

Ji = |

ea,Z

¢ rmcre9




VOL.40 N°1 2023
https://doi.org/10.22491/rmct.v40i1.12121.en

E

a

e

5[€a,2]5 €,

Jo=|

i =max{e, s (17)

It can be seen that B is the vector containing the
measured outputs of the system. In this case, the er-
ror for generating the current output is evaluated,
considering that the previously measured outputs
are available. This corresponds to the one-step-ahead
prediction of the output, that is, 37,(% , as illustrated
in Figure 1(a). It is also equivalent to saying that the
model uses the previous output measurements of the
system in real time for the prediction. It is important
to note that the use of the model in this format should
not be confused with recursive prediction, since its
coefficients are already determined and will not be
adjusted during operation.

Once the model has been identified, it is possible
to evaluate the prediction error independently of the
system, based on a simulation, which is much more
rigorous. A new input signal is adopted for valida-
tion, with the same initial conditions for the system
and model. In this case, the model is considered au-
tonomous, that is, its output ¥, is generated exclusive-
ly from the input provided and the trajectory of the
varying parameter ¢ without interference from the
system output y, as shown in Figure 1(b).

Figure 1 - Simulation of the predicted outputs: (a)
one step ahead; (b) independent.

o, | }
u, , e Sistemz:_~|—byk

> Modelo Y, .

(@)

G | ¥
u; , e Sistema [V,
» Modelo [y,

(b)

10 - rmcT@],

The error for a horizon of h simulation periods is
evaluated as follows:

5,1 yl yl
ES: 5,2 — y'2_j'>2 _y_);’
€ ViV,

and the simulation or validation indices by:

= max{

E| =yle.| +le| +omtle,|, (18)

5,1

es,2

Jy=|

es,h

J. = |E

s

es’l e

5,2 €

€ €t (19)

It should be noted that, using the same initial con-
ditions, input signals, sampling rate and sample size
in the one-step-ahead simulation and in the free si-
mulation, we obtain J; <J;.

3.2 Expansion by Multiple Varying Parameters

In the situation where there are multiple varying
parameters 6(1) = [0, (1) 0, () -+ 0,(1)]", the expansion
of the model coefficients can be performed in ana-
logy with (8) and (9), also considering the cross ter-
ms of the varying parameters. Thus, for the case of
two varying parameters, the coefficients of the model
output terms and, equivalently, for the input ones,
would have the following format:

2
a,=aq; (‘91’02) =q;, +ai,101 +ai,261 +eeet
N; N;
+ai,N,. 01 + ai,N,.HHZ teeet Qi aw, 92 +
2 2
+Q, 5y, +16192 + ai,21v,.+2‘91‘92 + ai,2N,+3‘91 92 +

N, -1
+ o +ai N,(N,.+3)91 0,
o2

Also in this case, the number of parameters ¢ to
be identified is significantly impacted by the number
of components d of the vector 6(¢), which makes the
proposed methodology unfeasible for d>1. For d=2:

§=”+m+zn:Nf+Zw:ZMi,j +
i=1 i=1

j=1
o N(N

+ 3y MBD

i=1




0,N. <1
here fori € {1, -, n}:y, =2 77,
where fori € { n}:y, {I,Ni>1
0,M,, <1

and fori € {1, -, w},j €{1, -, m}, p,, 2{1 M o>1
9 i,j

4. ldentification of LPV models in a
quarter-car suspension system.

This section uses the fourth-order car active suspen-
sion model, as per [39] as cited in [40]. This model, in
each subsection below, underwent new considerations
in relation to the varying parameter, which led to diffe-
rent degrees of nonlinearity and enabled a more de-
tailed and extended analysis of the proposed method.

Figure 2 illustrates the physical model of the quar-
ter-car active suspension. The constant m, represents
the damped mass of a quarter of the car and m, the
undamped mass of a wheel and tire assembly. The
upper spring, with elastic constant £ and the shock
absorber, with damping constant ¢, represent the very
suspension of the car. The lower spring, with elasticity
constant k, refers to the damping generated by the
deformation of the tire during the movement of the
car on the road. The disturbance w({) represents the
excitation input of the model and consists of a vertical
velocity signal due to irregularities found on the road.
The input u(t) represents the actuation force produ-
ced by the active suspension mechanism. Its purpose
is to isolate vibrations in the mass m,, in addition to
providing greater car adhesion to the road.

Figure 2 - Physical quarter-car active suspension

m T
x(O=v,(0)
k ¢ u(t)
5

x4(t )= Vz(t )

model

x,(0)

(1) k

‘ w(f)
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For the mathematical modeling of the assembly, the
state variables of the system can be defined as in [39]:
x,: distance between the masses m  and m,, from the
equilibrium position;

x,: distance between the wheel axle and its base, also
from the equilibrium position;

x,:vertical speed v (f) of the body in relation to the
inertial reference;

x,: vertical speed v,({) of the wheel axle in relation to
the inertial reference.

Based on the definition of the states presented, it is
possible to conclude that:

X = X4 — X3,

(20)
And also,

w(t) =%, +or, X = w(t) — xy, 21
Applying Newton’s second law to the mass m and con-
sidering that there is a linear dependence of the force on

the speed in the shock absorber, through the constant ¢:

mx, = kx, +cx, +u. (22)
From (20) in (22):
. k c c 1
X, =—x, ——x; +—x, +—u(?). (23)
m m m m

Applying Newton’s second law to the mass m,;:

myx, = —kx, + k,x, + cx; —cx, —u(z),

.k k, c c 1
Xy=——X +—X, +—x;, ——1x, —m—u(t),

m2 m2 mZ 2 2

(24)

In addition, the acceleration of the damped mass
m, and the state x, were considered as output variables
[40]. Thus, it is possible to write the mathematical mo-
del in state space form, according to:

o0 0 -1 1] [0 ]
X, 0 0 0 -1 || x 0 0
ol I IR S 3 [N L o R
X, m m.om || X m 0
X, k k c c || x 1 0
L omy omy m] m,

¢ rmer - 11
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1
+ {Z}(r). (25)

k c c
{yl}_ — 0 — —|x
=| m, m, m,
2000 1 0 o™ o

4

where y(t) = [y, (1) y, (O]", y, () is the acceleration of
the mass m, and y, (¢) the displacement of the mass m,,.
The model outputs, according to [40], are related to
the acceleration of the damped mass x, and the defor-
mation of the tire, x,,.

The nominal values of the parameters adopted
[39] were: m, = 288,9 kg; m, = 28,58 kg; ¢ = 850> &
= 10.000%;and k, = 155.900%. In all cases discussed
below, the sampling period 7=0,0025s and simula-
tion duration of 2 s were used, which totals 800 perio-
ds. In this article, the models were determined with
in y=0 em (10).

In the case of active suspension, considering all
measurable states, the control law u(t) = Kx() was
adopted, where x(t) is the state vector, knowing that
the value of K employed was obtained in order to
maintain a compromise between passenger comfort
and tire adhesion to the road. The value of K presen-
ted in [40] and used in this work was:

K =10"x[-9,9997 -0,0002 +0,8325 -0,8461]

For the simulation of the data to be used in the
identification, it was considered that the base of the
tire, in contact with the road, is subjected to a distur-
bance at speed w(t) of the form:

w(t) = w,() = 0.9sen(6pt) + 0.5sen(10pt) +
+ 0.75sen(8pt) + 0.6sen(20pt),

and for the validation of the models, the same signal

(26)

as in [40] was used, represented by the equation:

w(t) = w (t) = 0.6sen(8pt) + 0.75sen(12pt) +

(27)
+ 0.9sen(16pt) + 0.5sen(20p?),

12 « RmcT @],

Figure 3 shows the graphs of the input signals w(Z)
used for identification and validation.

Figure 3 - Input signals for: (a) identification w;;
(b) validation w..

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

(a) tempo (s)

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
(b) tempo (s)

41 LTI Models

In this item and the following, it was considered
that the mass m, (6) = 288,9 + 1006 and the signal
of the varying parameter 0(f) = 0,5t for 0 < ¢ < 2s,
in the identification phase. In the validation of the
model, another signal was used for the varying para-
meter, that is, 6(t) = sen(0,5nt) Thus, the mass presen-
ted values in the range of 288,9 < m < 388,9, which
could correspond to the addition of passengers and
luggage in the undamped mass. This consideration
is quite conservative in terms of the variation rate of
the varying parameter, taking into account a 2-second
simulation period. In other words, a variation rate of
the parameter slightly higher than what can happen
in practice, but respecting that every real physical sys-
tem is a low-pass system.
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Figures 4 and 5 show, respectively, the system ou-
tputs in the cases of passive and active suspension as
a function of the excitation with the validation signal
and w_ () em, (0).

Figure 4 - Output signals for validating the passive
suspension model: (a) y; (b) y,

0 02 04 06 08 1 1.2 14 16 1.8 2

(a) tempo (s)

(1] 0.2 0.4 0.6 0.8 1 1.2 1.4 16 18 2
(b) tempo (s)

Figure 5 - Output signals for validating the active
suspension model: (a) ; (b) .

0 0.2 04 086 0.8 1 1.2 14 16 1.8 2
(a) tempo (s)

1] 02 04 06 08 1 1.2 14 186 1.8 2
(b) tempo (s)

Table 1 shows the characteristics of four LTI mo-
dels that were adjusted for outputs y, and y, in the
cases of passive and active suspension, remembering
thatm =m (9).

It is worth mentioning [40] that the tire deforma-
tion x,, when compared to the outputs y, in Figures
4(b) and 5(b), in the active suspension, the excursion
was approximately double, while the acceleration y, in
Figure 5(a) of the damped mass m, was of the order
of 1% of that occurred for the passive suspension in
Figure 4(a).

Table 1 - Characteristics of the identified LTI
models.

passive passive active active
N Yo N Yy
4/4/1 4/4/1 2/2/1 2/2/1
[0000] [0000] [00] [0 0]
[0000] [0000] [00] [0 0]

8 8 4 4
3.4697e-3 5.3165e-7 1.2436e-3 2.8967¢-8
6.0661e-4 8.3421e-8 1.6489e—4 2.5778e-9

38.274  1.0384e-2 1.5798e-1 1.0063e-5
4.2958  6.8445e—4 2.4096e-2 8.5410e-7
0.9952 0.9970 0.9994 0.9998

Table 1 shows that the elements of the vectors N
and M in (11) were zero, which corresponds to the
adjustment of the LTI models. The values of j¢ and
J¢ in this table and in the following ones corres-
pond to the cost of one-step-ahead prediction, accor-
ding to Figure 1(a), using the validation input w_ (7).
It is also worth mentioning that the LTT M2 and M4
models of the outputs y,, for the passive and active
suspension, had satisfactory adjustments, and these
outputs are no longer addressed in the next cases.
The graphs of M2 and M4 are exactly those shown
in Figures 4(b) and 5(b).

¢ rmer - 13
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Figure 6(a) shows the outputs of the system, in blue,
and of the identified LTI M1 model, in red, for passive
suspension. Figure 6(b) illustrates the absolute value of
the error between these output signals. Figure 7 is the
equivalent of Figure 6 for the active suspension case.

Figure 6 - (a) Outputs y, of the system (blue) and
the LTI M1 model (red) with passive suspension; (b)
absolute value of the error between these outputs.

=

0 0.2 0.4 0.6 0.8 1 12 14 1.6 1.8 2

(@) tempo (s)
al
2
o3
o
-
oz
o §
=
-0
E1f
0 L L L L L nf\n
0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2
(b) tempo (s)

Figure 7- (a) Outputs y, of the system (blue) and
the LTI M3 model (red) with active suspension; (b)

absolute value of the error between these outputs.
0.1

0 0.2 04 0.6 0.8 il 1.2 1.4 1.6 1.8 2
(@) tempo (s)

modulo do erro

5 /WWVWV\AN\{\ ; | j ‘
[¢] 0.2 0.4 0.6 0.8 1 1.2 1.4 16 18 2
(b) tempo (s)

It should be noted that the maximum values of the
adjustment errors presented in Figures 6(b) and 7(b)

14« rme1 (],

correspond to the respective values of J, in Table 1
for M1 and M3.

4.2 LPV models with one exogenous parameter

In this case, the LPV M5 and M6 models in Table
2 were identified as the best models that reproduced,
respectively, the behavior of the outputs y, of the car
passive and active suspension, considering that the
mass m, varies over time.

Table 2 - Characteristics of the models identified
in 4.2 and 4.3.

passive active passive passive
4/4/1 2/2/1 4/4/1 4/4/1
[1000] [10] [0000] [1000]
[2022] [0 1] [0000] [1211]
15 6 8 21
5,6473e-4 3,1939e-4 3,2598e-3 3,5658e—4
1,0453e—-4 6,0073e-5 4,0924e-4 5,6716e-5
3,1698  9,1048¢-2 39,014 2,6949
3,4643e-1 9,2476e-3  3,8391  2,4190e-1
0.9966 0.9995 1.0012 0.9980

Comparing the values of J; of M5 and M6 in Ta-
ble 2 with their corresponding M1 and M3 in Table 1,
it can be seen that their adjustments are significantly
better, but logically at the expense of the increase in
the number of parameters.

Figure 8 presents the absolute values of the error be-
tween the outputsy, of the system and the validated mo-
dels, both for passive suspension and active suspension.
It is worth noting that the maximum absolute values of
these errors in the graphs of Figure 8 correspond to the
values of J; in Table 2. Comparing the graphs of Fi-
gures 6(b) and 8(a), it can be seen that the adjustment
error of the LPV model is in the range of 8% of the va-
lues presented by the LTT model. Similarly, for the case




of active suspension with the output y,, comparing the
graphs of Figures 7(b) and 8(b), it can be seen that the
adjustment error of the LPV model presents values lo-
wer than 40% of those of the LTT model.

An important characteristic observed in LPV models
is that their coefficients depend on 0 and, consequently,
vary over time. For this reason, it is observed that their
eigenvalues also change during the simulation. Thus,
since the models are discrete, it is desired that the eigen-
values A, = A, (¢) meet the following condition:

max |A;(t 1.
ostszsl QOIS

in order to maintain the stability of the model. Howe-
ver, it was found that small exceedance of this limit do
not always cause mismatches between the model ou-
tput and that of the plant. Another aspect that deser-
ves to be mentioned refers to the significant increase
in the number of parameters to be adjusted in LPV
models. Finally, it was observed that the adjustment of
the model is highly dependent on the trajectory of the
parameter 6 and its speed.

Figure 8 - Absolute error value of the output y, for
the LPV models: (a) M5 and (b) M6.
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0.2 0.4 0.6 08 1 1.2 14 1.6
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0.01
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o 0.005 |
=
=
bS]
=
0 | I | I | . |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2
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4.3 LPV models with two exogenous parameters

In this case, it was considered that the system has
two independent exogenous varying parameters,
which parameterize the mass m, and the spring cons-
tant k, as follows:
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m,(6,) = 288,9 + 1000,
k(6,) = 9.000 + 2.0006,,

where for 0 < ¢ < 2s:

91 = Gl(t) = 015t1
0, = 0,(t) = sen(0,5mt).

Thus, the parameters m, and k varied during the

simulation in the following intervals:
288,9 < m, < 388,9;
9.000 < k < 11.000.

The parameters 6, and 6, above were used during
the identification. In the validation, 6, = sen (0,5nt)
and 0, = 0,5¢.

Table 2 presents the characteristics of two models,
M7 and M8, adjusted for the output y, (#), in the case
of passive suspension with the simultaneous variation
of m, and k. M7 is of the LTI type, while M8 is the
LPV for the same data. Figure 9 presents the output
estimated by M7, in red, and the corresponding sys-
tem output. Table 2 shows that the adjustment cost
J; of M8 was less than 7% of that presented by M7. It
is worth mentioning that the output of M8 coincides
with the system output, in blue, in Figure 9.

The identification for active suspension was not
performed, since the controller & in [39] leads the clo-
sed-loop system to instability with the simultaneous
variation of m, and k.

Figure 9 - (a) Outputs y, of the system (blue) and
of the LTI M7 model (red) with passive suspension;
(b) absolute value of the error between these outputs.

1.6 1.8 2
tempo (s)

modulo do erro
[+

0 02 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

(b) tempo (s)
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4.4 LPV models with one endogenous parameter

In this case, the mass m, = 288,9 kg was conside-
red, fixed at its nominal value, but the spring model
was replaced by a more realistic one [41], which con-
siders the elastic constant k to vary from a certain de-
formation, as shown in Figure 10. Since the spring
deformation is the state x , then k£ becomes dependent
on it, that is:

1042, lx,] < 0,08 m

=k(x,) = 800+105(|x1]—0,08) N
[x41] m’

k

[x{] > 0,08 m
and (25) becomes a nonlinear Quasi-LPV model, with
0=x,.

Figure 10 - Suspension spring force versus
deformation.

K, [N]

3200 +

2400 +

1600

170 VS ——

1
0,02 004 0,06 008 010 xl[m]

Figure 11 illustrates the behavior of x, and % over
time for the input signal w.. When the deformation x,
exceeds 0.08 m, characterized by the dashed lines in
Figure 11(a), the spring constant k£ becomes variable,
as shown in Figure 11(b).

For this case, M9 and M10 from Table 3 were de-
termined, which are distinguished by their parame-
tric structure and the number of parameters. The
adjustments of these LPV models were not as good as
those identified in the previous cases.

16 « rmcT@],

Figure 11 - Temporal evolution for the identifica-
tion input: (a) state x; (b) (b) spring constant.

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
(a) tempo (s)
x10%

0 0.2 04 0.6 0.8 1 1.2 14 1.6 1.8 2
(b) tempo (s)

Table 3 - Characteristics of the LPV models identi-
fied for passive suspension in 4.4 and 4.5.

4/2/3

2/2/1

4/4/1 4/5/0

[5030] [22] [0312] [1000]
[3 4] [52] [4210] [00311]
91 15 45 94

41019 4.7566 8.0199  9.8109

1.7896 1.8838 2.8412  3.3706

57.719  61.040 52.349  63.038

6.4872 6.2101 7.5600  8.5038

1.0104 1.0067 1.1402  0.9294

Figure 12 shows the system response, in blue, and
that of the validated M9 model, in red. Nevertheless,
it was observed that for the one-step-ahead predic-
tion, this model presents a significant improvement
in its adjustments, since its estimated responses prac-
tically coincide with that of the system, in blue, in this
figure. Table 3 confirms this information based on the
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values of J; presented by M9 and M10. Figure 12(b)
illustrates the temporal evolution of the maximum ei-
genvalue module. It is interesting to note that in some
time intervals, this exceeds the unitary value.

It is worth noting that since the state x, is the varying
parameter itself, © will be changed with the modifica-
tion of the identification input to the validation input.

4.5 LPV models with two endogenous parameters

In this case, it was assumed that the suspension is
subjected to high speeds. Therefore, a more realistic
behavior for the force generated by the shock absor-
ber is one that presents a cubic relationship with the
compression or expansion speed. The mathematical
model no longer has a linear behavior, but can be
transformed into the Quasi-LPV form, as shown be-
low. Equation (22) can be rewritten as:

ke, + (%) +u=mx,. (27)
From (20):
(5)" = (%, = x,)" =] =3x0x, +3x,0] —x]. (28)
From (28) in (27):
X, :mix1 —i(?axf -i—xf)x3 +mi(3x32 +)c‘f))c4 +$. (29)
1 1 1 1

Developing (24) in an analogous way, we arrive at:

k k C
- t 2 2
X, _x1+_x2+_(3x4+x3)x3+

m, m, 2
c 2 2 u(t) (30)
——(Gx; +x)x, —=
m, 2

Using (20), (21), (29) and (30), we arrive at the
high-speed active suspension model:

0 0 -1 1
110 o 0 -1 X,
LI E g _faeed) Saeen) ||+
X3 m m m X3
Bk A i(3xf +x7) —i(3x32 +x7) i
L M, my,m, m, |

0
0 0
1 1
+ " u(t) + 0 w(r) (31)
1 0
|
k c s o c s * 1
|:y|}= Z 0 —;1(3x4+x3) Z(3x3+x4) N, ;1 u()
201 0 0 Sl o
X,

From the model in (31), it can be seen that the
states x, and x, compose the matrices A and C of the
dynamic, transforming it into a nonlinear Quasi-
-LPV model.

Figure 12 - (a) Outputs of the system (blue) and
the M9 model (red) with passive suspension; (b) Ma-
ximum eigenvalue modulus during validation.

o 0.2 04 0.6 0.8 1 12 1.4 1.6 1.8 2
(a) tempo (s)

o D,‘2 0‘.4 Diﬁ 0;8 ‘; 1‘.2 1,‘4 1;6 1‘.8 2
®) tempo (s)

Figure 13 shows the temporal evolution of the sta-
tes x, and x, in view of the application of the validation
input. In this case, these states will be considered the
varying parameters of the LPV model.

Table 3 presents the characteristics of M11 and
M12, adjusted for this problem. Although MI12
has a worse performance than M11 in terms of the
cost J, , it was selected due to the parsimony crite-
rion, as it presents a significantly smaller number
of parameters.

¢ rmer - 17
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Even though the adjustment was not perfect, it is
still much better than that of the corresponding LTI
model, which has J; =90,21. This model was not pre-
sented in the tables, but Figure 14 shows the system
output curve (blue), of M11 (black) and the output of
this LTT model (red).

Figure 13 - Evolution of the state with the valida-
tion input: (a) x,; (b) x,.

A . . . . . : . i .
0.8 1 1.2 1.4 1.6 18 2
(a) tempo (s)

0.8 1 1.2 1.4 1.6 1.8 2
(b) tempo (s)

Figure 14 - Outputs of the passive suspension for
the system (blue), M11 (black) and LTT (red).

=20

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 18 2
tempo (s)
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5. Conclusions

In this article, a multivariate method for identifying
LPV models with polynomial coefficients was presen-
ted. Among the applications of the method, in addi-
tion to the identification itself, there is the possibility
of approximating nonlinear models by LPV models,
with the purpose of applying LPV control techniques.
The results were explored through an example rela-
ted to a car suspension. Several cases were addressed,
with multiple endogenous and exogenous varying
parameters, seeking to approximate even nonlinear
Quasi-LPV systems. Some contributions in relation
to the ideas of [24] were implemented, such as the
extension of the method to multivariate systems, ob-
taining the solution from a data batch, the use of poly-
nomials with independent degrees per parameter,
the possibility of performing the time lag between the
current output and the most recent input in the mo-
del, as well as the extension of the method to multiple
varying parameters. Although the adjustments of the
LPV models were significantly better than those of
the LTI models, on the other hand, there was also a
large increase in the number of parameters to be de-
termined. It was also observed that the graph of the
maximum module of the eigenvalues of the model
over time is an important tool for analyzing the qua-
lity of the identified model and its chosen parametric
structure. It is worth remembering that the one-step-
-ahead prediction showed excellent results for all the
models presented, although there is a dependence on
the output measurements of the system in real time.
Finally, it was verified, mainly in the approximation of
nonlinear systems, the strong dependence of the ad-
justment of the model on the trajectory of the variable
parameter and its variation rate.
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Table A1 - Coefficients of the identified models.

Appendix A - Model coefficients
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1 -3.8899 -3.8875 -1.9650 -1.9657

2 5.7064 5.6979 9.9883e-1 9.9966e-1

3 -3.7426 -3.7329 2.0657e—4 2.4858e-3

4 9.2613e-1 9.2258e-1 1.8604e—4 —2.4850e-3
5 —-1.4126e-2 2.4678e-3

6 1.2122e-1 -7.2040e-3

7 -1.9795e-1 7.0104e-3

8 9.0897¢-2 -2.2742¢-3

1 -3.8854 -1.9650 -3.9020 -3.8902

2 -1.6614e-6 —-4.2788e-5 5.7371 1.5265e-6

3 5.6915 9.9900e-1 -3.7683 8.0307e-7

4 -3.7266 1.9014e—4 9.3315e-1 5.7055

5 9.2050e-1 2.6350e—4 1.3017e-1 -3.7401

6 4.7693e-2 -1.1792e-4 -3.1863e-1 9.2488e-1

7 —1.0689e-2 2.4856e-1 3.7301e-2

8 2.3814e-3 —6.0094e-2 1.1522e-2

9 —4.4441e-2 1.1000e-2

10 -5.1441e-2 -3.8458e-2
11 3.1428e-2 -1.0157e-2
12 -7.0396e-3 —4.3035e-5
13 4.8188e-2 -3.5744e-2
14 -2.0730e-2 —4.7985e-6
15 4.6544e-3 -5.4108e-7
16 -3.3115e-2
17 -1.3655e-2
18 3.8937e-2

19 3.4275e-2

20 1.2319e-2
21 —-1.4199e-2
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1 —2.1451 -1.8308 —2.6426 —2.8394
2 1.9944e-1 8.0398e-2 3.0743 -1.9056e-2
3 -3.2760 -4.5524 —-1.9459¢e-1 2.1094e-3
4 —24.188 8.3022-1 -1.2791e-2 3.4121

5 28.608 -5.1005e-2 -2.7967¢-2 -2.0704
6 536.92 4.9448 -1.2417e-1 5.2334e-1
7 1.4962 8.8089e-1 —4.5444e-2 -255.01
8 -3.3536e-1 -9.3699e-1 3.4387e-3 1024.2

9 -1.2673e-1 -5.1392e-1 9.8325e-2 -1548.7
10 2.9411 70.379 -1.2912e-2 -5.6339
11 10.771 -850.63 3.6693e-2 1.1043e-1
12 -1.5032e-2 —4000.2 —1.6806 —1.0481e-1
13 8.7969e-1 -8.7297e-1 4.6561e-1 1.8862e-1
14 -5.7447e-1 6.8925e-1 2.1312e-1 2.5113e-2
15 15.912 16.264 3.3240e-1 7.4621e-3
16 144.42 —-2.3406e-1 —1.0500e-1
17 —8.5403e-1 —2.3056e-2 —4.1403e-2
18 7.6552e-1 -1.0547e-1 9.2937e-2
19 -5.0067 2.7712e-2 1045.4
20 -176.37 —6.0313e-2 11.942
21 -565.46 -8.8240 -5.4097e-1
22 -3.6792 -265.75
23 3.8992 -6.4258
24 —1.4866e-1 3.4988e-1
25 -3.3907e-1

26 -9.5981e-2

27 7.8418e-1

28 2.0652e-2

29 -3.9837e-2

30 —2.6922

31 —1.1238e-1

32 2.9413e-1

33 2.7791e-1

34 -5.6398e-1

35 5.4148e-1

36 26.288

22 « mcT ¢,




VOL.40 N°1 2023

https://doi.org/10.22491/rmct.v40i1.12121.en

37 6.5098
38 -3.2759
39 1.4140e-1
40 —6.5476e-1
41 1.9229
42 -27.293
43 -2.5943
44 -1.2012e-1
45 10.132
The coefficients of the models presented in Table Al are arranged in the order shown in (7), thatis, a , a,,
Ay o by, by, b, ... As each coefficient has several parameters, they are in the sequence shown in item 3.2.
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