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ABSTRACT: This paper presents a method for the identification 
or tuning of LPV models with polynomial coefficients. The method 
is applicable to multivariable systems and to fit the behavior of 
nonlinear systems. It also presents an extension for multiple varying 
parameters. A Quarter-Car suspension model was used to illustrate 
the proposed method, and models with endogenous and exogenous 
parameters were adjusted.

RESUMO: Este artigo apresenta um método para a identificação ou 
ajuste de modelos LPV com coeficientes polinomiais. O método é aplicável 
a sistemas multivariáveis e para a aproximação do comportamento de 
sistemas não lineares. Discute-se também a extensão para múltiplos 
parâmetros variantes. Um modelo de suspensão de um automóvel foi 
empregado para ilustrar o método proposto, tendo sido ajustados modelos 
com parâmetros endógenos e exógenos.
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1. Introduction

In terms of controlling nonlinear systems, the 
classic gain scheduling approach, which uses 
linear design methods and their already con-

solidated tools, is among the approaches proposed 
in the literature.  Although it is widely used, it does 
not guarantee stability and performance outside the 
operating points considered in linear designs, espe-
cially in cases where the parametric variation rate is 
high. The fact that there is a connection between the 
formulation of Linear Matrix Inequalities (LMIs) and 
the Lyapunov Theory has allowed the stability and 
performance criteria developed for linear systems to 
be extended to non-stationary linear systems, espe-
cially for the general class of Linear Parameter Va-
rying (LPV) systems [1].

LPV control, with local or global stability and per-
formance guaranteed in large envelopes of the opera-
ting domain of multivariable systems, has been presen-
ted as a real alternative to the classic gain scheduling 
approach. LPV controller gains are automatically 

programmed without the need for any ad hoc method 
or interpolation. Since the mid-1990s, LPV control 
techniques have evolved significantly through three 
distinct methods [2, 3], namely: polytopic approach, 
grid-based approach, and Linear Fractional Trans-
formation (LFT). In polytopic approaches, models of 
some operating points are considered, in principle ge-
nerated by the extreme values of the coordinates of the 
vector of varying parameters. The remaining opera-
ting points are obtained from the affine combination 
of these extreme models, which may not be true. The 
disadvantage of this type of approach is also related 
to conservatism, which will probably include a range 
of situations that, despite being considered, may not 
occur in practice. On the other hand, the optimization 
problem to be solved, initially of infinite dimension, 
becomes a problem with finite dimension and equal to 
the number of vertices of the polytope, since the other 
models are determined by the affine combination of 
the models at these vertices [4, 5, 6].

In grid-based approaches, the space of varying 
parameters is tested in a grid of values, considering 
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realistic trajectories. The advantage of this type of 
methodology is the reduction of conservatism in re-
lation to the polytopic approach. Recursive and LMI 
algorithms of this type of methodology are found in 
the literature. On the other hand, it presents serious 
restrictions in relation to the number of varying 
parameters, that is, the computational effort grows 
exponentially and makes it impossible to treat LPV 
systems with more than two varying parameters. 
In addition, it also assumes that the system under 
analysis is relatively well-behaved, so that its dyna-
mic can be approximated without a large increase in 
the grid density [7, 8, 6].

In the case of LFT approaches, the LPV model 
must be transformed into an LFT. Therefore, appli-
cations of this methodology are restricted to cases in 
which the LPV models present specific functions of 
the varying parameters, such as polynomial functions 
of the varying parameters. Once the LFT model has 
been obtained, µ synthesis and others can be used to 
calculate the controller [9, 10].

A wide variety of LPV control applications were 
initially developed in the aeronautical area, but 
applications are expanding to several other are-
as, and are validated by experiments or high-fide-
lity simulations, as presented in [11]. One of the 
main bottlenecks today in the application of LPV 
control techniques is the lack of methods for ob-
taining LPV models. This need has promoted the  
interest of the scientific community working in the 
area of system identification, in order to be able to 
produce models of nonlinear or nonstationary sys-
tems, with the ultimate objective of using existing 
LPV control methods.

System identification methods aim to obtain mo-
dels from the measured signals of the inputs and 
outputs of a plant under study [12]. Basically, they 
can be classified into two fronts, depending on the 
structure of the model: parametric and nonparame-
tric identification. The case of nonparametric iden-
tification involves an undetermined structure and, 
consequently, an a priori undetermined number of 
parameters. Nonparametric LPV identification has 
basically been divided into three main approaches: 

(a) the scattering function; (b) the least-squares su-
pport vector machine (LS-SVM), and (c) the one 
based on the Bayesian configuration, respectively 
[13, 14, 15] as cited in [16]. Regarding parametric 
prediction, the structure to be identified is previou-
sly established and a certain number of parameters 
must be adjusted.

The methods for identifying LPV systems [17] can 
be classified, as defined in [18], into two main areas, 
according to the mathematical representation used, 
LPV-IO (Input-Output) and LPV-SS (State Space). 

LPV-SS methods adopt a discrete representation 
in state space or its equivalent LFR, which allows 
the representation of Multiple-Input Multiple-Ou-
tput (MIMO) systems. More information about the 
approaches that use the LPV-SS structure can be 
found in [18].

This work uses the LPV-IO representation, which 
utilizes discrete time series models as its mathema-
tical structure. In most cases, it uses the LTI error 
prediction configuration and is generally treated 
only for the Single-Input Single-Output (SISO) case. 
A discrete model in the form of time series can be 
represented as:

1 0
( ) ( ) ( ) ( ) ( ) ( )

n m
i j

i j
i j

y k a q y k b q u k e kθ θ
= =

= − + +∑ ∑ (1)

where 𝑞 is the delay operator in the time domain, 
so that:

( ) = ( ) (2)

The variable 𝑒(k) is the process noise, usually a 
white noise with zero mean, n ≥ m and the coefficients  
{ }  e  and { }  e are dependent on the parameter θ  
The prediction of the coefficients ai and bj in the mo-
del (1) can be performed as defined in [18]:

(i) Interpolation approach. The methods that use 
this approach are those originating from the classic 
concept of gain-scheduling, characterized by consi-
dering as the operating point specific values of the 
varying parameter that, once frozen, determines the 
error prediction structure of the LTI system, allowing 
the identification of local models. The global model is 
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obtained through the interpolation of local models, as 
developed in [19, 20].

(ii) Set association approach. In this case, the noi-
se in the measured data is treated as deterministic 
uncertainty and, instead of a direct estimate of the 
coefficients, a set of their feasible values is calculated, 
as presented in [21, 22]. This feasible set represents 
the values of the coefficients that satisfy the model 
equation in (1) and a priori with an assumed error 
less than or equal to that of the noise in the measu-
red data. A direct estimate of the coefficient is obtai-
ned by calculating the mean of the values in the fe-
asible set. This approach generally uses non-convex 
programming methods.

(iii) Nonlinear programming approach. The co-
efficients { }  e  and { }  e  of the time series model 
in (1) are estimated using nonlinear programming 
methods to minimize the mean squared prediction 
error [13, 23]. The objective is to achieve a better 
prediction than that of linear regression methods. 
In some cases, this is done through a non-linear 
parameterization:

where 𝛼𝑖,0, 𝛼𝑖,1, 𝛽𝑗,0 and 𝛽𝑗,1 ∈ℝ and the variable Z is 
the output of an artificial neural network that uses as 
inputs the output vector [(y(k) y(k-1) ⋯)]T, the input 
vector [(u(k) u(k-1) ⋯)]T and the vector of the measu-
res of the varying parameter [(θ(k) θ(k-1) ⋯)]T of the 
system to be identified. This approach, in most cases, 
uses a mixed procedure of linear and non-linear pro-
gramming through linear regression methods combi-
ned with neural networks.

(iv) Linear regression approach. Structures of li-
near models of discrete time series are used, such as 
Autoregressive with Exogenous Inputs (ARX), wide-
ly used in the literature on the identification of LTI 
systems, which is part of the system identification pa-
ckage of the MATLAB® programming and numeric 
computing platform.

In the LPV case, coefficients { }  e  and { }  e  of 
(1) are polynomial functions of the varying parame-
ter, such as:

( ) = ,0 + ,  

( ) = ,0 + ,  

 

In this way, it uses the concept of predicting the 
LTI error via Least-Squares (LS), recursive or not, as 
well as instrumental variables that lead to a better ad-
justment in the presence of noisy signals. As a result, 
a linear model in the parameters is obtained by linear 
regression, according to the precursor work of [24], 
an approach used in this work.

In [25] a method of LPV-IO identification is propo-
sed using the linear regression approach, which seeks 
a parsimonious, nonparametric model structure that 
can capture the unknown dependence of the coeffi-
cients  and  as a function of the varying parameter in 
(1). This dependence can vary between polynomial, 
rational, or even discontinuous functions. To obtain 
an efficient solution, the article proposes the LS-SVM 
method, which leads to a construction of the model 
without the a priori information of order and delay of 
the system under study. It was originally developed as 
a class of supervised learning methods, as presented 
in [26, 27] as cited in [25], where it is used to obtain 
the model structure.

In [28], a method based on Instrumental Varia-
ble (IV) for bias correction was developed to identify 
SISO LPV-IO models, of the ARX type, from measu-
rements of the output and the signal of the varying 
parameter, corrupted by noise. The noise process 
associated with the output is considered colored, of 
zero mean and with unknown distribution, while the 
measurements of the signal of the varying parameter 
are affected by a white Gaussian noise.  The proposed 
method eliminates the bias resulting from the metho-
ds originating from LS when they neglect the mea-
surement noise existing in the signal of the varying 
parameter. Thus, it provides a consistent estimate of 
LPV models with polynomial dependence of the va-
rying parameter, whose instrument used only needs 
to be uncorrelated with the noise that corrupts the 
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output observations. In this way, an approximation 
for the noise-free varying parameter does not need to 
be calculated.

The work developed in [29] is an analysis of the 
one-step-ahead error prediction criterion used in 
LPV identification processes, with the aim of obtai-
ning new kernel functions [27, 30] to be applied in 
LPV-IO identification processes of nonparametric 
Box-Jenkins models.

In [31] a bias correction scheme for closed-loop 
identification of LPV-IO models is presented, using 
the regression approach, caused by the correlation 
between the input signal that excites the process and 
the output noise. The proposed identification algori-
thm provides a consistent estimate of the open-loop 
model parameters when the output signal and the va-
riable signal of the variable parameter are corrupted 
by measurement noise.

A nonparametric LPV-IO identification by regres-
sion is presented in [32] , using LS-SVM to estimate 
the skid angle of a passenger car, replacing the sensor 
used in commercial vehicles, due to its high cost. The 
problem of the article is inspired by [21], which uses 
the set association approach method, but the article 
uses the method proposed in [25].

The work of [33] presents a study of LPV-IO iden-
tification through the regression approach, in the se-
arch for a global model with a nonparametric struc-
ture without requiring much a priori information 
about the model order, using Hilbert space through 
Reproducing Kernel Hilbert Space (RKHS), which 
corresponds to a global quadratic optimization pro-
blem directly solvable with LMI constraints, for the 
selection of the structure of the parsimonious model 
to be identified.

An LPV-IO method by online regression is presen-
ted in [34], in which the analysis of the dynamics is 
performed in the domain of the varying parameter 
or as a function of it named by the authors as cau-
sal regressor, instead of the time domain. As a result, 
the coefficients to be identified are re-estimated using 
only present data and at least one previous estimate, 
that is, each coefficient prediction does not necessari-
ly depend on its estimate at the previous instant, but 

on one of its past estimates at an instant when its as-
sociated causal regressors are similar to the present 
ones. The proposed criterion for measuring this si-
milarity is the norm of the differences between the 
current and past causal regressors. The proposed 
method presented low computational cost for similar 
adjustment of the coefficients, compared to traditio-
nal offline methods.

In this work, some ideas presented in [24] were 
adopted, and the following additional developments 
were proposed: extension of the method to multiva-
riate systems; obtainment of the solution from a ba-
tch of stored data instead of estimate by the recursive 
form; use of polynomials with independent degrees 
in each model coefficient; expansion with multiple va-
rying parameters and the realization of the time lag in 
the model between the current output and the most 
recent input, which corresponds to the increase in the 
relative degree of the transfer function of the iden-
tified model. The proposed technique was also used 
to approximate nonlinear models in the Quasi-LPV 
format by LPV models with polynomial coefficients. 
To illustrate the proposed method, a car suspension 
system was explored in several situations, with para-
meter variations and nonlinearities, approximating 
them by LPV models.

Regarding the structure of this work, section 2 
presents the definitions of LPV and Quasi-LPV sys-
tems, section 3 presents the proposed method with 
the extension to multivariable system and expansion 
to multiple varying parameters. Section 4 presents 
the problem addressed for a quarter-car suspension 
model with several nonlinear situations, depending 
on the type and quantity of variable parameters.  
Finally, section 5 presents the final considerations 
and conclusions.

2. LPV/Quasi-LPV Systems
An LPV or Quasi-LPV system is one whose matri-

ces A, B, C and D in the state space representation are 
not constant and vary depending on parameters that 
are exogenous or endogenous to the system. The-
se parameters, which alter the system dynamic, are 
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called variable parameters θ. An exogenous variable 
parameter is one that is external to the system; an 
endogenous parameter is characterized as being in-
ternal to the system, represented by one of the states 
of the system or a function of it. Both variable para-
meters must be measurable in order to portray the 
system.  Depending on the variable parameters used 
in the system representation, the models can be clas-
sified as LPV or Quasi-LPV. 

An LPV model is recognized by having all exoge-
nous and measurable varying parameters. The follo-
wing is the definition of LPV models.

Definition 1 – LPV Model [35], as cited in [36]: 
Given a compact subset P ⊂ ℝd, Fp represents the ope-
rator that maps t ∈ ℝ+ onto a vector θ(t) of external 
parameters, whose components are continuous func-
tions by parts ∀t ∈ ℝ+ Consider also the continuous 
functions, A:P → ℝn×n, B:P → ℝn×ω, 𝐶:𝑃 → ℝ𝜁×𝑛, and  
D:P → ℝ𝜁×w. An LPV model of order n is defined as:

( ) ( ( )) ( ( )) ( )
.

( ) ( ( )) ( ( )) ( )
θ θ
θ θ

     
=     

     

x t A t B t x t
y t C t D t u t (3)

It can be added that the Linear Time Varying 
(LTV) model is a particular case of an LPV system, in 
which the dynamic matrices depend on the varying 
parameter θ(t) = t.

A Quasi-LPV model is a nonlinear model that re-
sembles the LPV model in (3). In this case, the vector  
θ(t) is composed of two types of varying parameters, 
exogenous and endogenous, both measurable. 

Definition 2 – Quasi-LPV Model [36]: Be θ(t) ∈ P 
such that θ(t)=[Ω(t)T z(t)T ]T, where Ω(t) corresponds 
to the vector of exogenous variables, similarly to the 
LPV system in (3), and z(t) corresponds to the vec-
tor of endogenous variables, containing some states 
of the system or functions of these, which interfere 
in the system dynamic. The Quasi-LPV model can be 
defined by:

where the state vector x(t)=[z(t)T η(t)T ]T and η(t) re-
presents the vector containing the states that do not 
interfere in the model matrices.

The following example depicts a mathematical 
manipulation to transform a nonlinear system into a 
Quasi-LPV model. The endogenous varying parame-
ters considered are responsible for the nonlinearities 
of the system and must be measurable to characterize 
this representation.

According to [2], as an example, consider the non-
linear plant modeled by the following equations:

where u is the input of the system and considering  
x1 and x2 as the model states, x =  [x1 x2] can be defined 
as the state vector. Thus, a Quasi-LPV representation 
of this nonlinear model could be 

This representation may not be adequate unless x1 

and x2 are measurable and x1 ≠ 0 ∀t ∈ ℝ+ In this case, 
there are only the endogenous varying parameters 
and η(t) = ∅. Thus x(t)=z(t) and z(t)=[x1 x2]

T. 
Assuming that one has only x1 measurable, a more 

adequate representation could be:

which allows rewriting the equation so that the sta-
te matrix only has dependence on the variable x1, that 
is, z(t) = x1 and η(t) = x2.

3. Method proposed
The problem addressed here consists of adjusting 

an LPV model with polynomial coefficients, so that its 
output ŷ approximates, according to some previously 
defined standard, the output  of the nonlinear physi-
cal system. The proposal is that the model be discrete 
and in the form of a time series, whose coefficients can 
be polynomials dependent on the varying parameter  
θ = θ(t). Initially, we are dealing only with the SISO 
case with a single varying parameter. To identify the 
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model, it is assumed that the system under study is 
previously monitored with sensors, so that the tem-
poral data of its inputs, outputs and the varying para-
meter, even if continuous, are acquired according to a 
convenient sampling rate T.

In the same way as in [24], the class of discrete-time 
LPV models was adopted, parameterized as follows:

(4)

where q is the delay operator, as defined in (2), 
which leads to polynomials as a function of the va-
rying parameter, according to: 

(5)

(6)

In addition, it was considered that the varying 
parameter θ, although continuous, was transformed 
into a function of discrete time, that is, θ ≔ θ(kT) = θk, 
where T is the sampling period.

Thus, by (4), (5) and (6), the structure of the iden-
tified model, in the form of a time series, can be writ-
ten as:

1 1 2 2

1 2 1 1,
− − −

− − − − − +

= − − − − +
+ + + +





k k k n k n

k r k r m k r m

y a y a y a y
b u b u b u (7)

where yk = y(kT) and uk = u(kT) n, is the order of 
the model and represents the number of autore-
gressive terms of the output signal, m is the number 
of input terms, m is the delay between the current 
output and the most recent input considered, and 
m + r - 1 ≤ n.

It was also considered that the coefficients of the 
model above have polynomial dependence in relation 
to the varying parameter θ = θk. Thus, ∀i ∈ {1,⋯,n} e 
Ni∈ ℕ and :

(8)

Similarly, for the coefficients of the input variable u, 
∀j ∈ {1, ⋯, m} and Mj ∈ ℕ:

(9)

The varying parameter θ(t) is considered measu-
rable, but may be out of phase with the current ou-
tput, that is:

(10)

where γ ∈ {0,⋯, n}. Usually,  is adopted, that is, the 
determination of the current output depends on the 
value of θ at the previous instant.

Although the structure in (7) was adopted in the 
form of a time series, it is important to note that, defi-
ned in this way, it will have a one-to-one corresponden-
ce with the models in the form of state space, requiring 
only the use of a canonical realization.  In this way, the 
calculation of eigenvalues ​​of a model can be determi-
ned in the usual way, from the characteristic equation:

Considering the examples in section 4, the vectors 
containing the orders of the polynomials in each coe-
fficient of the autoregressive terms of the output and 
of the input terms are defined, as per (8) and (9):

(11)

The number ξ of parameters to be identified can 
be calculated by means of:

(12)

Given the system (4), structured as per (5) to (12), 
Theorem 1 shows how the polynomial coefficients to 
be identified are determined, from the resolution of a 
system of linear equations and the input, output and 
varying parameter data, all previously measured in 
the physical system.

Theorem 1 – Consider uk, yk and θk, with k ∈ {1,⋯, 
p}, the measured data series referring, respectively, 
to the input, the output and the varying parameter 
of the system in (4). The polynomial coefficients in 
(5) and (6) of the LPV model can be determined by 
solving the following system of linear equations:

,
X

AX A A B
X

α
α β

β

 
 = =  

 
(13)
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where:

1 2

1 2

1 2

1, 2, 0,

, 1, 1,

1, 2, ,

,

 
n

n

n

n N n N N

n N n N N

p N p N p n N

Y Y Y

Y Y Y
A

Y Y Y

α

− −

−

− − −

 
 
 =  
 
  





   



1 2

1 2

1 2

, 1, 1,

1, , 2,

, 1, 1,

,

 
m

m

m

n r M n r M n r m M

n r M n r M n r m M

p r M p r M p r m M

U U U

U U U
A

U U U

β

− − − − − +

− + − − − +

− − − − − +

 
 
 =  
 
  





   



Demonstration: The system of linear equations in 
(13) comes directly from (7). For a given instant of 
time t = kT, equation (7) can be rewritten with the 
help of (8) and (9) as follows:

1

11,0 1, 1( )N
k N ky yα α θ −= − + + − 

,0 ,( )n

n

N
n n N k nyα α θ −− + + +

1

11,0 1,( )M
M k ruβ β θ −+ + + + 

,0 , 1( ) ,m

m

M
m m M k r muβ β θ − − ++ + +

so that:

1 11, , ,[
nk k N k n N k r My Y Y U− − −=  

1, ] .
mk r m M

X
U

X
α

β
− − +

 
 
 



Considering that k ∈ {n, n + 1,⋯, p}, we arrive at 
the system of linear equations in (13).

The linear system resulting from Theorem 1 is 
overdetermined. Several methods can be used to 
solve it, such as pseudo-inverse, partial scaling and 
pivoting, Gauss-Jordan and others. An alternative is 
to use nonlinear programming methods, seeking the 
minimization of ‖AX - B‖, which is a convex problem 
[37]. However, in this case, by means of mathemati-
cal transformations, it is also possible to use linear 

programming methods, such as LMI resolution pa-
ckages [38].

In the case of a multivariable system with ω inputs 
and ζ outputs, it is assumed that each of the outputs 
can be identified independently, that is, that the ori-
ginal problem can be decomposed into a set of ζ Mul-
tiple-Input Single-Output (MISO) problems with ω 
independent inputs. Thus, for each output i, with i 
∈ {1,2,⋯,ζ}

(14)

Where yi,k represents the output yi at instant t = kT 
Using Theorem 1 and developing (14), analogously to 
the SISO case, it is possible to determine a system of 
linear equations to calculate the coefficients depen-
dent on the varying parameter θ in Ai , B1 ,⋯, Bω.

With multiple inputs, the vector M in (11) is trans-
formed into a matrix, with each row presenting the 
degrees of the polynomial expansions of the terms of 
each input. The number of coefficients ξ to be iden-
tified in (12), considering a single varying parameter 
θ, will be:

(15)

3.1 Adjustment Indices

The assessment of the adjustment error between the 
behavior of the model and the real dynamic system is 
carried out in two parts. In the first part, called the coe-
fficient adjustment error, the error in the calculation of 
the coefficients during the identification process is tes-
ted, based on the data measured at the input and output 
of the physical system. Using (13) and that v = p - n + 1, 
the adjustment error vector is defined as: 

,1 1 11 1 1

,2 2 21 1 2

, 1 1

,

a

a

a v v v v

e b a x a x
e b a x a x

e b a x a x

ν ν

ν ν

ν ν

− − −   
   − − −   =
   
   

− − −    










and the adjustment indexes of the coefficients as:

2 2 2

2
2 ,1 ,2 ,...  ,a

a a a a vJ E e e e= + += + (16)



10 • RMCT

VOL.40 Nº1 2023
https://doi.org/10.22491/rmct.v40i1.12121.en

,1 ,2 ,, , ... , max{ ,  }a
a a a a vJ E e e e

∞
∞ = = (17)

It can be seen that B is the vector containing the 
measured outputs of the system. In this case, the er-
ror for generating the current output is evaluated, 
considering that the previously measured outputs 
are available. This corresponds to the one-step-ahead 
prediction of the output, that is, , as illustrated 
in Figure 1(a). It is also equivalent to saying that the 
model uses the previous output measurements of the 
system in real time for the prediction. It is important 
to note that the use of the model in this format should 
not be confused with recursive prediction, since its 
coefficients are already determined and will not be 
adjusted during operation.

Once the model has been identified, it is possible 
to evaluate the prediction error independently of the 
system, based on a simulation, which is much more 
rigorous. A new input signal is adopted for valida-
tion, with the same initial conditions for the system 
and model. In this case, the model is considered au-
tonomous, that is, its output ŷk is generated exclusive-
ly from the input provided and the trajectory of the 
varying parameter θ without interference from the 
system output y, as shown in Figure 1(b).

Figure 1 - Simulation of the predicted outputs: (a) 
one step ahead; (b) independent.

The error for a horizon of h simulation periods is 
evaluated as follows:

and the simulation or validation indices by:

2 2 2

2
2 ,1 ,2 ,...  . ,s s s
s

s hJ E e e e+== + + (18)

,1 ,2 ,, ,... ,max{ ,  }s s ss h
sJ E e e e

∞
∞ = = (19)

It should be noted that, using the same initial con-
ditions, input signals, sampling rate and sample size 
in the one-step-ahead simulation and in the free si-
mulation, we obtain 2 2

a sJ J≤ .

3.2 Expansion by Multiple Varying Parameters

In the situation where there are multiple varying 
parameters θ(t) = [θ1 (t) θ2 (t) ⋯ θd(t)]

T, the expansion 
of the model coefficients can be performed in ana-
logy with (8) and (9), also considering the cross ter-
ms of the varying parameters. Thus, for the case of 
two varying parameters, the coefficients of the model 
output terms and, equivalently, for the input ones, 
would have the following format: 

2
1 2 ,0 ,1 1 ,2 1

, 1 , 2 ,2 2

2 2
,2 1 2 ,2 1 2 ,

1

1 2 3

( 3

2 1 2

1
1 2

,
)

2

( , )
i i

i i i

i i i

i

i i

i i i i i

N N
i N i N i N

i N i N i N

N
N N

i

a a θ θ α α θ α θ

α θ α θ α θ

α θ θ α θ θ α θ θ

α θ θ

+

+ + +

−
+

= = + + + +

+ + + + +

+ + + +

+ +







Also in this case, the number of parameters ξ to 
be identified is significantly impacted by the number 
of components d of the vector θ(t), which makes the 
proposed methodology unfeasible for d≫1. For d=2:  

,
1 1 1

,
,

1 1 1

,( 1)( 1)
2 2

n

i i j
i i

n
i j i ji i

i i j
i

m

j

i

m

j

n m N M

M MN N

ω

ω

ξ

γ ρ

= =

==

=

=

+

−−

= + + +

+ +

∑

∑

∑ ∑

∑ ∑
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where for i ∈ {1, ⋯, n}:
0 , 1
1 , 1

γ
≤

=  >
i

i
i

N
N

;

and for i ∈ {1, ⋯, w}, j ∈ {1, ⋯, m}, ,
,

,

0 , 1
1 , 1

ρ
≤=  >

i j
i j

i j

M
M

.

4. Identification of LPV models in a 
quarter-car suspension system.

This section uses the fourth-order car active suspen-
sion model, as per [39] as cited in [40]. This model, in 
each subsection below, underwent new considerations 
in relation to the varying parameter, which led to diffe-
rent degrees of nonlinearity and enabled a more de-
tailed and extended analysis of the proposed method.

Figure 2 illustrates the physical model of the quar-
ter-car active suspension. The constant m1 represents 
the damped mass of a quarter of the car and m2 the 
undamped mass of a wheel and tire assembly. The 
upper spring, with elastic constant k and the shock 
absorber, with damping constant c, represent the very 
suspension of the car. The lower spring, with elasticity 
constant kt, refers to the damping generated by the 
deformation of the tire during the movement of the 
car on the road. The disturbance w(t) represents the 
excitation input of the model and consists of a vertical 
velocity signal due to irregularities found on the road. 
The input u(t) represents the actuation force produ-
ced by the active suspension mechanism. Its purpose 
is to isolate vibrations in the mass m1, in addition to 
providing greater car adhesion to the road.

Figure 2 - Physical quarter-car active suspension 
model

For the mathematical modeling of the assembly, the 
state variables of the system can be defined as in [39]: 
x1: distance between the masses m1 and m2, from the 
equilibrium position; 
x2: distance between the wheel axle and its base, also 
from the equilibrium position;
x3:vertical speed v1(t) of the body in relation to the 
inertial reference; 
x4: vertical speed v2(t) of the wheel axle in relation to 
the inertial reference.
Based on the definition of the states presented, it is 
possible to conclude that:

(20)

And also, 

(21)

Applying Newton’s second law to the mass 𝑚1 and con-
sidering that there is a linear dependence of the force on 
the speed in the shock absorber, through the constant c:

11 3 1 .k xxm ucx += +  (22)

From (20) in (22):

3 1 3 4
1 1 1 1

1 ( ).k c cx x x x u t
m m m m

= − + + (23)

Applying Newton’s second law to the mass 𝑚2:

2 4 1 2 3 4 ( ),tm x kx k x cx cx u t= − + + − −

4 1 2 3 4
2 2 2 2 2

1 ( ),tkk c cx x x x x u t
m m m m m

= − + + − − (24)

In addition, the acceleration of the damped mass  
m1 and the state x2 were considered as output variables 
[40]. Thus, it is possible to write the mathematical mo-
del in state space form, according to:

1 1 1 1

2 2

1 1

2 2

2

3

4

2

3

4

2

0 0 1 1 0
00 0 0 1 0
110
0

( ) ( )

1 0

   
                        = + +                      

−

    
     

−



−

− − −







 t

k c c
m m m m

k k c c
m

x x
x x

u t w t
x x

m m m
x x

m

or
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1

1 2

2
1 1 1 1

3

4

10

0 1 0
).

0
(

0

x
y x

u t
y x

x

k c c
m m m m

 
          = +              

 

−

 
(25)

where y(t) = [y1 (t) y2 (t)]
T, y1 (t) is the acceleration of 

the mass m1 and y2 (t) the displacement of the mass m2. 

The model outputs, according to [40], are related to 
the acceleration of the damped mass x3 and the defor-
mation of the tire, x2. 

The nominal values of the parameters adopted 
[39] were: m1 = 288,9 kg; m2 = 28,58 kg;  k 
=    . In all cases discussed 
below, the sampling period T=0,0025s and simula-
tion duration of 2 s were used, which totals 800 perio-
ds. In this article, the models were determined with  
in γ=0 em (10).

In the case of active suspension, considering all 
measurable states, the control law u(t) = Kx(t) was 
adopted, where x(t) is the state vector, knowing that 
the value of K employed was obtained in order to 
maintain a compromise between passenger comfort 
and tire adhesion to the road. The value of K presen-
ted in [40] and used in this work was:

310 [ 9,9997 0,0002 0,8325 0,8461]= × − − + −K

For the simulation of the data to be used in the 
identification, it was considered that the base of the 
tire, in contact with the road, is subjected to a distur-
bance at speed w(t) of the form:

w(t) = wi(t) = 0.9sen(6pt) + 0.5sen(10pt) +
	 + 0.75sen(8pt) + 0.6sen(20pt),

(26)

and for the validation of the models, the same signal 
as in [40] was used, represented by the equation:

w(t) = wv(t) = 0.6sen(8pt) + 0.75sen(12pt) +
	 + 0.9sen(16pt) + 0.5sen(20pt),

(27)

and

Figure 3 shows the graphs of the input signals w(t) 
used for identification and validation.

Figure 3 - Input signals for: (a) identification wi; 
(b) validation wv.

4.1 LTI Models

In this item and the following, it was considered 
that the mass m1 (θ) = 288,9 + 100θ and the signal 
of the varying parameter θ(t) = 0,5t for 0 ≤ t ≤ 2s, 
in the identification phase. In the validation of the 
model, another signal was used for the varying para-
meter, that is, θ(t) = sen(0,5πt) Thus, the mass presen-
ted values in the range of 288,9 ≤ m1 ≤ 388,9, which 
could correspond to the addition of passengers and 
luggage in the undamped mass. This consideration 
is quite conservative in terms of the variation rate of 
the varying parameter, taking into account a 2-second 
simulation period. In other words, a variation rate of 
the parameter slightly higher than what can happen 
in practice, but respecting that every real physical sys-
tem is a low-pass system.
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Figures 4 and 5 show, respectively, the system ou-
tputs in the cases of passive and active suspension as 
a function of the excitation with the validation signal  
and wv (t) e m1 (θ).

Figure 4 - Output signals for validating the passive 
suspension model: (a) y1; (b) y2. 

Figure 5 - Output signals for validating the active 
suspension model: (a) ; (b) .

Table 1 shows the characteristics of four LTI mo-
dels that were adjusted for outputs y1 and y2 in the 
cases of passive and active suspension, remembering 
that m1 = m1 (θ).

It is worth mentioning [40] that the tire deforma-
tion x2, when compared to the outputs y2 in Figures 
4(b) and 5(b), in the active suspension, the excursion 
was approximately double, while the acceleration y1 in 
Figure 5(a) of the damped mass m1 was of the order 
of 1% of that occurred for the passive suspension in 
Figure 4(a).

Table 1 - Characteristics of the identified LTI 
models.

Models
M1 M2 M3 M4

susp. passive passive active active

output y1 y2 y1 y2

n/m/r 4/4/1 4/4/1 2/2/1 2/2/1

N [0 0 0 0] [0 0 0 0] [0 0] [0 0]

M [0 0 0 0] [0 0 0 0] [0 0] [0 0]

ξ 8 8 4 4

2
aJ 3.4697e–3 5.3165e–7 1.2436e–3 2.8967e–8

∞
aJ 6.0661e–4 8.3421e–8 1.6489e–4 2.5778e–9

2
sJ 38.274 1.0384e–2 1.5798e–1 1.0063e–5

∞
sJ 4.2958 6.8445e–4 2.4096e–2 8.5410e–7

max|| 0.9952 0.9970 0.9994 0.9998

Table 1 shows that the elements of the vectors N 
and M in (11) were zero, which corresponds to the 
adjustment of the LTI models. The values of 

2
aJ  and 

∞
aJ  in this table and in the following ones corres-

pond to the cost of one-step-ahead prediction, accor-
ding to Figure 1(a), using the validation input wv (t). 
It is also worth mentioning that the LTI M2 and M4 
models of the outputs y2, for the passive and active 
suspension, had satisfactory adjustments, and these 
outputs are no longer addressed in the next cases. 
The graphs of M2 and M4 are exactly those shown 
in Figures 4(b) and 5(b).
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Figure 6(a) shows the outputs  of the system, in blue, 
and of the identified LTI M1 model, in red, for passive 
suspension. Figure 6(b) illustrates the absolute value of 
the error between these output signals. Figure 7 is the 
equivalent of Figure 6 for the active suspension case.

Figure 6 - (a) Outputs y1 of the system (blue) and 
the LTI M1 model (red) with passive suspension; (b) 
absolute value of the error between these outputs.

Figure 7- (a) Outputs y1 of the system (blue) and 
the LTI M3 model (red) with active suspension; (b) 
absolute value of the error between these outputs.

It should be noted that the maximum values of the 
adjustment errors presented in Figures 6(b) and 7(b) 

correspond to the respective values of ∞
sJ  in Table 1 

for M1 and M3.

4.2 LPV models with one exogenous parameter

In this case, the LPV M5 and M6 models in Table 
2 were identified as the best models that reproduced, 
respectively, the behavior of the outputs y1 of the car 
passive and active suspension, considering that the 
mass m1 varies over time. 

Table 2 - Characteristics of the models identified 
in 4.2 and 4.3.

Models
M5 M6 M7 M8

susp. passive active passive passive

n/m/r 4/4/1 2/2/1 4/4/1 4/4/1

N [1 0 0 0] [1 0] [0 0 0 0] [1 0 0 0]

M [2 0 2 2] [0 1] [0 0 0 0] [1 2 1 1]

ξ 15 6 8 21

2
aJ 5,6473e–4 3,1939e–4 3,2598e–3 3,5658e–4

∞
aJ 1,0453e–4 6,0073e–5 4,0924e–4 5,6716e–5

2
sJ 3,1698 9,1048e–2 39,014 2,6949

∞
sJ 3,4643e–1 9,2476e–3 3,8391 2,4190e–1

max|| 0.9966 0.9995 1.0012 0.9980

Comparing the values of 2
sJ  of M5 and M6 in Ta-

ble 2 with their corresponding M1 and M3 in Table 1, 
it can be seen that their adjustments are significantly 
better, but logically at the expense of the increase in 
the number of parameters.

Figure 8 presents the absolute values of the error be-
tween the outputs y1 of the system and the validated mo-
dels, both for passive suspension and active suspension. 
It is worth noting that the maximum absolute values of 
these errors in the graphs of Figure 8 correspond to the 
values of ∞

sJ  in Table 2. Comparing the graphs of Fi-
gures 6(b) and 8(a), it can be seen that the adjustment 
error of the LPV model is in the range of 8% of the va-
lues ​​presented by the LTI model. Similarly, for the case 
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of active suspension with the output y1, comparing the 
graphs of Figures 7(b) and 8(b), it can be seen that the 
adjustment error of the LPV model presents values lo-
wer than 40% of those of the LTI model.

An important characteristic observed in LPV models 
is that their coefficients depend on θ and, consequently, 
vary over time. For this reason, it is observed that their 
eigenvalues also change during the simulation. Thus, 
since the models are discrete, it is desired that the eigen-
values λi = λi (t) meet the following condition:

in order to maintain the stability of the model. Howe-
ver, it was found that small exceedance of this limit do 
not always cause mismatches between the model ou-
tput and that of the plant. Another aspect that deser-
ves to be mentioned refers to the significant increase 
in the number of parameters to be adjusted in LPV 
models. Finally, it was observed that the adjustment of 
the model is highly dependent on the trajectory of the 
parameter θ and its speed.

Figure 8 - Absolute error value of the output y1 for 
the LPV models: (a) M5 and (b) M6.

4.3 LPV models with two exogenous parameters

In this case, it was considered that the system has 
two independent exogenous varying parameters, 
which parameterize the mass m1 and the spring cons-
tant k, as follows:

where for 0 ≤ t ≤ 2 s:

Thus, the parameters m1 and k varied during the 
simulation in the following intervals:

288,9 ≤ 𝑚1 ≤ 388,9;
9.000 ≤ 𝑘 ≤ 11.000.

The parameters θ1 and θ2 above were used during 
the identification. In the validation, θ1 = sen (0,5πt) 
and θ2 = 0,5t. 

Table 2 presents the characteristics of two models, 
M7 and M8, adjusted for the output y1 (t), in the case 
of passive suspension with the simultaneous variation 
of m1 and k. M7 is of the LTI type, while M8 is the 
LPV for the same data. Figure 9 presents the output 
estimated by M7, in red, and the corresponding sys-
tem output. Table 2 shows that the adjustment cost 

2
sJ  of M8 was less than 7% of that presented by M7. It 

is worth mentioning that the output of M8 coincides 
with the system output, in blue, in Figure 9.

The identification for active suspension was not 
performed, since the controller k in [39] leads the clo-
sed-loop system to instability with the simultaneous 
variation of m1 and k.

Figure 9 - (a) Outputs y1 of the system (blue) and 
of the LTI M7 model (red) with passive suspension; 
(b) absolute value of the error between these outputs.
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4.4 LPV models with one endogenous parameter

In this case, the mass m1 = 288,9 kg was conside-
red, fixed at its nominal value, but the spring model 
was replaced by a more realistic one [41], which con-
siders the elastic constant k to vary from a certain de-
formation, as shown in Figure 10. Since the spring 
deformation is the state x1, then k becomes dependent 
on it, that is:

and (25) becomes a nonlinear Quasi-LPV model, with 
𝜃 = 𝑥1.

Figure 10 - Suspension spring force versus 
deformation.

Figure 11 illustrates the behavior of x1 and k over 
time for the input signal wi. When the deformation x1  

exceeds 0.08 m, characterized by the dashed lines in 
Figure 11(a), the spring constant k becomes variable, 
as shown in Figure 11(b).

For this case, M9 and M10 from Table 3 were de-
termined, which are distinguished by their parame-
tric structure and the number of parameters. The 
adjustments of these LPV models were not as good as 
those identified in the previous cases.

Figure 11 - Temporal evolution for the identifica-
tion input: (a) state x1; (b) (b) spring constant.

Table 3 - Characteristics of the LPV models identi-
fied for passive suspension in 4.4 and 4.5.

Models

M9 M10 M11 M12

n/m/r 4/2/3 2/2/1 4/4/1 4/5/0

N [5 0 3 0] [2 2] [0 3 1 2] [1 0 0 0]

M [3 4] [5 2] [4 2 1 0] [0 0 3 1 1]

x 21 15 45 24

2
aJ 4.1019 4.7566 8.0199 9.8109

∞
aJ 1.7896 1.8838 2.8412 3.3706

2
sJ 57.719 61.040 52.349 63.038

∞
sJ 6.4872 6.2101 7.5600 8.5038

max|| 1.0104 1.0067 1.1402 0.9294

Figure 12 shows the system response, in blue, and 
that of the validated M9 model, in red. Nevertheless, 
it was observed that for the one-step-ahead predic-
tion, this model presents a significant improvement 
in its adjustments, since its estimated responses prac-
tically coincide with that of the system, in blue, in this 
figure. Table 3 confirms this information based on the 
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values of 2
aJ  presented by M9 and M10. Figure 12(b) 

illustrates the temporal evolution of the maximum ei-
genvalue module. It is interesting to note that in some 
time intervals, this exceeds the unitary value.

It is worth noting that since the state x1 is the varying 
parameter itself, θ will be changed with the modifica-
tion of the identification input to the validation input.

4.5 LPV models with two endogenous parameters

In this case, it was assumed that the suspension is 
subjected to high speeds. Therefore, a more realistic 
behavior for the force generated by the shock absor-
ber is one that presents a cubic relationship with the 
compression or expansion speed. The mathematical 
model no longer has a linear behavior, but can be 
transformed into the Quasi-LPV form, as shown be-
low. Equation (22) can be rewritten as:

3
11 1 3.( )k x u mc xx + =+   (27)

From (20):

3 3 3 2 2 3
1 4 3 4 4 3 4 3 3( ) ( ) 3 3 .x x x x x x x x x= − = − + − (28)

From (28) in (27):

2 2 2 2
3 1 4 3 3 3 4 4

1 1 1 1

( )(3 ) (3 ) .k c c u tx x x x x x x x
m m m m

= − + + + + (29)

Developing (24) in an analogous way, we arrive at:

2 2
4 1 2 4 3 3

2 2 2

2 2
3 4 4

2 2

(3 )

( )(3 )

= + + + +

− + −



tkk cx x x x x x
m m m

c u tx x x
m m

(30)

Using (20), (21), (29) and (30), we arrive at the 
high-speed active suspension model:

2 2 2 2
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From the model in (31), it can be seen that the 
states x3 and x4 compose the matrices A and C of the 
dynamic, transforming it into a nonlinear Quasi-
-LPV model.

Figure 12 - (a) Outputs  of the system (blue) and 
the M9 model (red) with passive suspension; (b) Ma-
ximum eigenvalue modulus during validation.

Figure 13 shows the temporal evolution of the sta-
tes x3 and x4 in view of the application of the validation 
input. In this case, these states will be considered the 
varying parameters of the LPV model. 

Table 3 presents the characteristics of M11 and 
M12, adjusted for this problem. Although M12  
has a worse performance than M11 in terms of the 
cost 2

sJ , it was selected due to the parsimony crite-
rion, as it presents a significantly smaller number 
of parameters. 
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Even though the adjustment was not perfect, it is 
still much better than that of the corresponding LTI 
model, which has 2 90,21.=sJ  This model was not pre-
sented in the tables, but Figure 14 shows the system 
output curve (blue), of M11 (black) and the output of 
this LTI model (red). 

Figure 13 - Evolution of the state with the valida-
tion input: (a) x3; (b) x4.

Figure 14 - Outputs  of the passive suspension for 
the system (blue), M11 (black) and LTI (red).

5. Conclusions
In this article, a multivariate method for identifying 

LPV models with polynomial coefficients was presen-
ted. Among the applications of the method, in addi-
tion to the identification itself, there is the possibility 
of approximating nonlinear models by LPV models, 
with the purpose of applying LPV control techniques. 
The results were explored through an example rela-
ted to a car suspension. Several cases were addressed, 
with multiple endogenous and exogenous varying 
parameters, seeking to approximate even nonlinear 
Quasi-LPV systems. Some contributions in relation 
to the ideas of [24] were implemented, such as the 
extension of the method to multivariate systems, ob-
taining the solution from a data batch, the use of poly-
nomials with independent degrees per parameter, 
the possibility of performing the time lag between the 
current output and the most recent input in the mo-
del, as well as the extension of the method to multiple 
varying parameters. Although the adjustments of the 
LPV models were significantly better than those of 
the LTI models, on the other hand, there was also a 
large increase in the number of parameters to be de-
termined. It was also observed that the graph of the 
maximum module of the eigenvalues of the model 
over time is an important tool for analyzing the qua-
lity of the identified model and its chosen parametric 
structure. It is worth remembering that the one-step-
-ahead prediction showed excellent results for all the 
models presented, although there is a dependence on 
the output measurements of the system in real time. 
Finally, it was verified, mainly in the approximation of 
nonlinear systems, the strong dependence of the ad-
justment of the model on the trajectory of the variable 
parameter and its variation rate.
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Appendix A - Model coefficients

Table A1 - Coefficients of the identified models.

M1 M2 M3 M4
1 –3.8899 –3.8875 –1.9650 –1.9657
2 5.7064 5.6979 9.9883e–1 9.9966e–1
3 –3.7426 –3.7329 2.0657e–4 2.4858e–3
4 9.2613e–1 9.2258e–1 1.8604e–4 –2.4850e–3
5 –1.4126e–2 2.4678e–3
6 1.2122e–1 –7.2040e–3
7 –1.9795e–1 7.0104e–3
8 9.0897e–2 –2.2742e–3

M5 M6 M7 M8
1 –3.8854 –1.9650 –3.9020 –3.8902
2 –1.6614e-6 –4.2788e–5 5.7371 1.5265e–6
3 5.6915 9.9900e–1 –3.7683 8.0307e–7
4 –3.7266 1.9014e–4 9.3315e–1 5.7055
5 9.2050e–1 2.6350e–4 1.3017e–1 –3.7401
6 4.7693e–2 –1.1792e–4 –3.1863e–1 9.2488e–1
7 –1.0689e–2 2.4856e–1 3.7301e–2
8 2.3814e–3 –6.0094e–2 1.1522e–2
9 –4.4441e–2 1.1000e–2

10 –5.1441e–2 –3.8458e–2
11 3.1428e–2 –1.0157e–2
12 –7.0396e–3 –4.3035e–5
13 4.8188e–2 –3.5744e–2
14 –2.0730e–2 –4.7985e–6
15 4.6544e–3 –5.4108e–7
16 –3.3115e–2
17 –1.3655e–2
18 3.8937e–2
19 3.4275e–2
20 1.2319e–2
21 –1.4199e–2
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M9 M10 M11 M12
1 –2.1451 –1.8308 –2.6426 –2.8394
2 1.9944e-1 8.0398e–2 3.0743 –1.9056e–2
3 –3.2760 –4.5524 –1.9459e–1 2.1094e–3
4 –24.188 8.3022–1 –1.2791e–2 3.4121
5 28.608 –5.1005e–2 –2.7967e–2 –2.0704
6 536.92 4.9448 –1.2417e–1 5.2334e–1
7 1.4962 8.8089e–1 –4.5444e–2 –255.01
8 –3.3536e–1 –9.3699e–1 3.4387e–3 1024.2
9 –1.2673e–1 –5.1392e–1 9.8325e–2 –1548.7

10 2.9411 70.379 –1.2912e–2 -5.6339
11 10.771 –850.63 3.6693e–2 1.1043e–1
12 –1.5032e–2 –4000.2 –1.6806 –1.0481e–1
13 8.7969e–1 –8.7297e–1 4.6561e–1 1.8862e–1
14 –5.7447e–1 6.8925e–1 2.1312e–1 2.5113e–2
15 15.912 16.264 3.3240e–1 7.4621e–3
16 144.42 –2.3406e–1 –1.0500e–1
17 –8.5403e–1 –2.3056e–2 –4.1403e–2
18 7.6552e–1 –1.0547e–1 9.2937e–2
19 –5.0067 2.7712e–2 1045.4
20 –176.37 –6.0313e–2 11.942
21 –565.46 –8.8240 –5.4097e–1
22 –3.6792 -265.75
23 3.8992 -6.4258
24 –1.4866e–1 3.4988e–1
25 –3.3907e–1
26 –9.5981e–2
27 7.8418e–1
28 2.0652e–2
29 –3.9837e–2
30 –2.6922
31 –1.1238e–1
32 2.9413e–1
33 2.7791e–1
34 –5.6398e–1
35 5.4148e–1
36 26.288
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M9 M10 M11 M12
37 6.5098
38 –3.2759
39 1.4140e–1
40 –6.5476e–1
41 1.9229
42 –27.293
43 –2.5943
44 –1.2012e–1
45 10.132

The coefficients of the models presented in Table A1 are arranged in the order shown in (7), that is, a1, a2, 
a3, ..., b1, b2, b3, .... As each coefficient has several parameters, they are in the sequence shown in item 3.2.
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