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1. Introdução

1.1 Estrutura e função da acetilcolinesterase e acetilcolina

A acetilcolinesterase (AChE; E.C. 3.1.1.7) 
é uma enzima da classe das hidrolases, 
responsáveis pela hidrólise de ésteres 

de ácidos carboxílicos [1], cujo sítio ativo é composto 
por uma tríade catalítica contendo resíduos de seri-
na, histidina e glutamato, sendo o resíduo de serina o 
responsável pelo ataque ao éster carboxílico [2]. Sua 
atuação ocorre nos sistemas nervosos central e perifé-
rico, bem como nas junções neuromusculares em que, 
em conjunto com os receptores de acetilcolina (ACh) 
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muscarínicos e nicotínicos, a AChE regula a transmis-
são de impulsos elétricos (potenciais de ação) ao longo 
das sinapses neuromusculares. A função fisiológica da 
AChE é a hidrólise do neurotransmissor ACh, pondo 
fim aos potenciais de ação gerados pelo estímulo aos 
receptores colinérgicos. A enzima atua quando da libe-
ração da ACh pelo neurônio pré-sináptico em respos-
ta a um potencial de ação, impedindo o acúmulo do 
neurotransmissor na fenda sináptica (Fig. 1) [3]–[5].

A ACh é transportada ao longo da sinapse e, ao 
ligar-se aos seus receptores, leva, dentre outras res-
postas, a um influxo de íons K+ no processo nervoso 
pós-sináptico ou em uma célula muscular. Este pro-
cesso dá início aos potenciais de ação na célula pós-
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-sináptica, o qual é rapidamente cessado pela atua-
ção da AChE ao hidrolisar a ACh em seus produtos 
de decomposição, colina e acetato (Fig. 2), os quais 
são utilizados para regenerar a ACh no nervo peri-
férico [3, 4].

Fig. 1 - Estrutura de uma sinapse, em que ocorre a 
liberação e a captação de um neurotransmissor 

Fonte: [6]

Fig. 2 - Hidrólise enzimática da acetilcolina em 
seus precursores: acetato e colina.

Fonte: elaborado pelos autores

1.2 Inibição da acetilcolinesterase

A inibição da AChE provoca um acúmulo do neu-
rotransmissor ACh na fenda pós-sináptica, levando à 
hiperestimulação dos receptores colinérgicos (musca-
rínicos e nicotínicos). Tal inibição pode ser reversível, 
sendo, portanto, temporária, como ocorre no caso 
das terapias para o tratamento da doença de Alzhei-
mer (DA), em que inibidores reversíveis como done-
pezila, galantamina e rivastigmina são empregados, 
abordagem conhecida como “hipótese colinérgica” [7]
mainly affecting older people. The unclear root cause 
and involvement of various enzymes in the pathologi-
cal conditions confirm the complexity of the disease. 
Quantitative structure-activity relationship (QSAR. 

No entanto, no caso de intoxicação por pesticidas (pa-
raoxon, malation; Fig. 3) ou agentes neurotóxicos, a 
inibição ocorre de forma irreversível. Embora os pes-
ticidas sejam menos tóxicos do que os agentes neuro-
tóxicos, ambas as intoxicações podem levar ao mau 
funcionamento do sistema nervoso central (SNC) e de 
junções neuromusculares, podendo ser letal [8], [9].

Os agentes neurotóxicos são substâncias organo-
fosforadas que podem ser divididas em três séries: a 
mais antiga, conhecida como série G (sarin, soman, 
tabun e ciclo-sarin, dentre outros), compostos dota-
dos de volatilidade nas condições normais de tem-
peratura e pressão; a série V (VX, RVX e CVX, por 
exemplo) (Fig. 3), mais persistente no ambiente [10]
e.g. in Alzheimer’s disease, Parkinson’s disease, or in 
eco-toxicology as a biological marker. Many inhibi-
tors of AChE have been identified in nature as well 
as prepared in chemical labs as a result of systema-
tic synthetic efforts. The organophosphorus (OP; e a 
série A, cujas substâncias são conhecidas como Novi-
choks (Fig. 3) [11], acrescentada em junho de 2020 ao 
Anexo 1 da Convenção de Proibição de Armas Quími-
cas (CPAQ) [12].

Fig. 3 - Estruturas dos agentes neurotóxicos das 
séries G, V e A e de exemplos de pesticidas

Fonte: elaborado pelos autores.
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A inibição da AChE se dá pela formação de uma 
ligação covalente entre o organofosforado e a hidroxila 
do resíduo de serina no sítio ativo da enzima, o que 
impossibilita a interação da enzima com a molécula de 
ACh (Fig. 4). O acúmulo deste neurotransmissor re-
sulta em hiperestimulação de receptores colinérgicos, 
falha da transmissão sináptica colinérgica, paralisia 
muscular e comprometimento doSNC. Tais efeitos 
perfazem a “síndrome colinérgica”, cujos sintomas re-
presentativos são a miose (contração pupilar), salivação 
excessiva, bradicardia, diarreia, êmese e broncocons-
trição, causados pela hiperestimulação dos receptores 
muscarínicos; também causam convulsões, paralisia e 
disfunções musculares, provocadas pela hiperestimu-
lação dos receptores nicotínicos. A ação nas junções 
neuromusculares da musculatura lisa do diafragma 
pode levar a morte por parada respiratória [13], [14].

A reação de inibição da AChE segue um mecanismo 
de adição e eliminação (Fig. 4), em que a hidroxila do 
resíduo de serina da AChE se liga ao sítio eletrofílico do 
inibidor, seguido da eliminação de um grupo de saída. No 
caso de inibidores irreversíveis, como organofosforados, 
o grupo de saída pode ser, por exemplo, um halogênio 
(fluoreto no caso de sarin e soman, Fig. 3) ou um cianeto 
(tabun, Fig. 3). No caso de inibidores reversíveis, como 
carbamatos, o grupo de saída é um alcóxido [8], [15], [16].

Fig. 4 - Reações da AChE com inibidores irreversí-
veis e reversíveis. 

Fonte: elaborado pelos autores.

1.3 Reativação da acetilcolinesterase

Visando evitar a letalidade da intoxicação por or-
ganofosforados, a administração de medidas médi-

cas deve ser realizada o mais breve possível, princi-
palmente nos casos em que a AChE pode sofrer um 
processo chamado de “envelhecimento”, situação na 
qual os antídotos disponíveis na clínica perdem sua 
capacidade de atuação, sendo o soman um dos agen-
tes mais propensos a causar tal fenômeno. A rápida 
ação medicamentosa permite ainda a redução de ris-
cos relacionados à problemas neurológicos que afli-
gem vítimas de agentes neurotóxicos [17], [18]. Além 
de um agente antimuscarínico (atropina), o qual age 
antagonizando os efeitos do excesso de neurotrans-
missor na fenda sináptica, e de um anticonvulsivante 
(diazepam), faz-se essencial a administração de um 
antídoto reativador de AChE de maneira a reverter o 
quadro de intoxicação [19].

Os reativadores da AChE devem possuir um for-
te caráter nucleofílico para que sejam capazes de 
quebrar a forte ligação P-O entre o organofosforado 
e o resíduo de serina da tríade catalítica da AChE. 
Tal característica se faz presente nas oximas catiôni-
cas derivadas de aldeídos piridínicos, única classe de 
substância empregada clinicamente no tratamento de 
intoxicação por agentes neurotóxicos, dentre as quais 
encontram-se disponíveis no mercado a pralidoxima 
(2-PAM), obidoxima (OBD), trimedoxima (TMB-4) e 
asoxima (HI-6) (Fig. 5) [20]–[23].

Fig. 5 - Reativadores clínicos de acetilcolinesterase 
(X-: Cl-, I-, MsO-).

Fonte: elaborado pelos autores.

Apesar destas oximas serem empregadas em clí-
nica, elas têm limitações como elevada toxicidade, 
restringindo sua dosagem ao paciente, e espectro 
limitado de atuação contra organofosforados estru-
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turalmente distintos, não havendo ainda uma oxi-
ma de amplo espectro de reativação [13]. Outras 
limitações incluem a sua baixa penetração da bar-
reira hematoencefálica em virtude de seu caráter 
catiônico e a impossibilidade de reativar a forma 
“envelhecida” de AChE, causada pela despropor-
ção do aduto enzimático formado. O processo de 
“envelhecimento” consiste na desalquilação do adu-
to fosforado da AChE inibida (Fig. 6). De forma a 
melhorar o espectro de reativação das oximas clíni-
cas atuais, pode-se combinar uma ou mais delas em 
caso de AChE inibida por diferentes agentes neuro-
tóxicos [24], [25].

Fig. 6 - Mecanismo de inibição da AChE por um 
organofosforado seguido de seu envelhecimento.

Fonte: elaborado pelos autores.

2. Pralidoxima – propriedades e síntese

2.1 Propriedades biológicas

A 2-PAM, sintetizada nos Estados Unidos em 1955 
[20], foi a primeira molécula capaz de reativar a 
AChE inibida por organofosforado a encontrar apli-
cação clínica. Por se tratar de uma oxima catiônica, 
ela é encontrada na forma de um sal, podendo estar 
associada aos ânions cloreto, iodeto, metilsulfato ou 
mesilato. A 2-PAM é empregada não só pelo Exército 
Brasileiro, mas também pelos exércitos dos Estados 

Unidos, França e Reino Unido, além de estar lista-
da no RENAME (Relação Nacional de Medicamentos 
Essenciais) do Ministério da Saúde [10], [26], [27]e.g. 
in Alzheimer’s disease, Parkinson’s disease, or in eco-
-toxicology as a biological marker. Many inhibitors of 
AChE have been identified in nature as well as prepa-
red in chemical labs as a result of systematic synthetic 
efforts. The organophosphorus (OP.

A pralidoxima demonstrou eficácia na reativação 
da AChE inibida por sarin ou VX, especialmente 
quando combinada com atropina [28], [29], porém 
não é adequada na reativação da enzima inibida 
por tabun ou soman [30], o que reitera a ausên-
cia de um “antídoto universal”[13]. Outra limitação 
deste reativador reside em sua baixa taxa de pe-
netração da barreira hematoencefálica, dada pela 
presença de um nitrogênio positivamente carrega-
do. Sakurada e colaboradores [31] determinaram 
que tal taxa seja de aproximadamente 10%, porém 
estudos posteriores sugerem que este valor esteja 
superestimado [32]. Esta limitação farmacocinética 
é comum a todos os reativadores de AChE dispo-
níveis em clínica, o que propulsiona a pesquisa de 
novos compostos cada vez mais ativos e eficientes 
para reativação do SNC. 

A administração da 2-PAM em humanos a uma 
dose de 10 mg/kg levou a concentrações maiores do 
que 4 µg/ml no plasma sanguíneo em menos de 10 
minutos, o que se manteve pelos 50-55 minutos sub-
sequentes em decorrência de sua elevada estabilidade 
em água [33], [34]. O emprego deste reativador pode 
incluir efeitos colaterais como tontura, visão embaça-
da, diplopia (visão dupla), náusea e dores de cabeça 
[33], [35].

2.2 Metodologias sintéticas para a pralidoxima

Green e colaboradores [36] descreveram, em 1956, 
uma síntese do iodeto de pralidoxima (2) na qual rea-
giu-se 2-piridinaldoxima (1) com iodeto de metila em 
etanol sob refluxo durante 4 horas (Fig. 7). O grupo 
de pesquisa também apresentou uma possível intera-
ção entre oximas e o agente neurotóxico sarin. O ren-
dimento da reação não foi reportado no artigo.



 RMCT • 91

VOL.40 Nº1 2023
https://doi.org/10.22491/rmct.v40i1.9273.pt

Fig. 7 - Síntese do iodeto de pralidoxima proposta 
por Green.

Fonte: elaborado pelos autores.

Em 1957, Ginsburg e colaboradores [37] descre-
veram a síntese da pralidoxima e de diversos outros 
derivados desta. Para a síntese do iodeto de pralido-
xima, três rotas sintéticas diferentes foram apresenta-
das (Fig.8).

Fig. 8 - Três diferentes rotas sintéticas para o iode-
to de pralidoxima apresentadas por Ginsburg.

Fonte: elaborado pelos autores.

No 1º método, 1 reage com excesso de iodeto de 
metila em nitrobenzeno por 3h com refluxo, forman-
do 2 com um rendimento de 88% (Fig.8) [37].

Em seguida no 2º método, reagiu-se 2-piridina-
carboxaldeído (3) com excesso de iodeto de metila 
em nitrobenzeno com agitação durante alguns dias a 
temperatura ambiente. O produto obtido (iodeto de 

2-formil-1-metil piridínio, 4) foi precipitado utilizan-
do-se acetona. Na etapa seguinte, 4 foi adicionado a 
uma solução metanólica de cloridrato de hidroxila-
mina e hidróxido de potássio a -5 ºC e deixado sob 
agitação por 20 minutos enquanto a temperatura re-
duzia até -10 ºC. O produto foi precipitado em éter 
dietílico, obtendo-se 80% de rendimento (Fig. 8).

No 3º método, reagiu-se 4 com excesso de clori-
drato de hidroxilamina em água por 15 minutos sob 
refluxo seguido de um ajuste de pH a uma faixa de 
6-7 usando-se uma solução de hidróxido de sódio. A 
oxima foi recristalizada por metanol ou etanol, che-
gando-se a um rendimento de 62% (Fig.8).

Em 1964, uma rota inovadora foi proposta por Blo-
ch para a síntese do cloreto de pralidoxima (6) [38]. 
Anteriormente, 6 era sintetizado a partir da reação de 
uma solução de 2 com cloreto de prata sólido. Então o 
iodeto de prata formado era filtrado e a solução aquo-
sa evaporada até a secura a baixas temperaturas. A 
desvantagem deste método estava nos traços de pra-
ta remanescentes no produto, difíceis de se remover, 
e no fato de se utilizar um reagente caro, o cloreto 
de prata. Outro método de conversão do iodeto de 
pralidoxima no cloreto envolvia o uso de uma resina 
de troca aniônica, porém este método era caro e não 
muito prático, pois a regeneração da resina saturada 
de iodeto era difícil e, assim como no método ante-
rior, também era necessário a evaporação de grandes 
volumes de água a baixas temperaturas. Também era 
feita a quaternarização direta de 1 com cloreto de me-
tila em um reator de pressão, porém o rendimento 
obtido era baixo e eram necessárias sucessivas recris-
talizações para se alcançar uma pureza aceitável [38]. 
Tendo conhecimento de tais desvantagens, Bloch 
propôs uma metodologia sintética em que se passaria 
por uma etapa intermediária formando-se metilsul-
fato de pralidoxima (5) através da reação de 1 com  
sulfato de dimetila. A molécula 5 era então convertida 
em cloreto ao reagir com ácido clorídrico concentra-
do e um solvente orgânico miscível em água (Fig. 9). 
Os solventes testados foram isopropanol (rendimento 
de 85%), metanol (30%), etanol absoluto (70%), isobu-
tanol (84%), propileno glicol (27%), dioxano (29%) e 
acetona (75%). Como 5 se mostrou significativamente 
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mais solúvel do que 6 nos solventes citados, ao fim da 
reação o produto podia ser facilmente separado por 
filtração e então lavado com acetona, obtendo-se um 
alto grau de pureza [38].

Fig. 9 - Síntese do cloreto de pralidoxima proposta por Bloch.

Fonte: elaborado pelos autores.

No trabalho de Ellin e colaboradores [39], a molé-
cula 6 foi sintetizada reagindo 1 com cloreto de metila 
em N,N-dimetilformamida (DMF) (Fig. 10). À pressão 
atmosférica, tanto DMF como outros solventes como 
acetona, etanol, tetraidrofurano e benzeno apresenta-
ram baixos rendimentos para o método apresentado. 
No entanto, ao se utilizar DMF a pressões da ordem 
de aproximadamente 7 bar, obteve-se um rendimen-
to em torno de quatro vezes maior do que os obti-
dos quando os outros solventes foram empregados. 
O motivo deste aumento se deve ao fato de o DMF 
ser um solvente polar aprótico e a reação seguir um 
mecanismo do tipo SN2, que tem como etapa lenta a 
formação de um estado de transição dipolar, o qual 
tem sua energia diminuída pelo efeito de solvatação 
do DMF, levando a uma maior estabilidade [39].

Fig. 10 - Síntese do cloreto de pralidoxima 
proposta por Ellin.

Fonte: elaborado pelos autores.

No estudo de Rao e colaboradores [40], tendo por 
objetivo a síntese do cloreto de pralidoxima através 
da metilação de 1, foram testados diversos agentes 
de metilação tais como metanossulfonato de metila 

e para-toluenossulfonato de metila (Fig. 11). No caso 
da metilação com metanossulfonato de metila, os sol-
ventes testados foram tolueno (rendimento de 70%), 
éter metil terc-butílico (52%), dimetoxietano (60%), 
acetonitrila (90%) e 1,4-dioxano (55%). Para a metila-
ção com para-toluenossulfonato de metila, foram tes-
tados os solventes tolueno (91%) e acetonitrila (70%). 
Em todas as reações, com exceção da metilação com 
metanossulfonato de metila em acetonitrila, foi reali-
zada a cristalização do produto bruto em uma solução 
de etanol com acetato de etila. Na etapa final, para a 
conversão em cloreto de pralidoxima, foi feita uma 
solução em isopropanol do produto da metilação, a 
qual foi borbulhada com gás de cloreto de hidrogênio 
anidro para formar 6 (Fig. 11).

Fig. 11 - Síntese do cloreto de pralidoxima proposta 
por Rao.

Fonte: elaborado pelos autores.

3. Discussão
A 2-PAM faz parte de uma ampla família de com-

postos com forte caráter nucleofílico, capazes de re-
ativar a AChE inibida por agentes neurotóxicos. Do 
ponto de vista estrutural, é empregada como um sal 
de amônio quaternário e possui apenas um grupo 
oxima, enquanto os outros três reativadores disponí-
veis possuem dois. A quaternarização das oximas tem 
a finalidade de aumentar a afinidade com o sítio cata-
lítico aniônico da AChE, aumentar a solubilidade em 
água e ajustar os valores de pKa (entre 7,0 e 8,35), 
de modo a contribuir com o processo de reativação 
[41]. Uma das principais limitações das oximas cati-
ônicas é a sua fraca penetração pela barreira hema-
toencefálica, o que se deve à baixa lipofilicidade e faz 
com que ajam predominantemente no sistema nervo-
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so periférico [42]. No entanto, a 2-PAM apresentou 
uma penetração de 10% da barreira hematoencefálica  
de ratos, contra valores de 1 a 3% para as oximas  
bipiridínicas [31], [43]. Dentre os antídotos dis-
poníveis, tem-se a asoxima como a menos tóxica,  
seguida da 2-PAM, e a obidoxima e trimedoxima 
como as mais tóxicas [44].

Embora os antídotos de emprego clínico sejam 
catiônicos e possuam um ou dois anéis piridíni-
cos, estudos recentes têm buscado reativadores de 
AChE com outras características estruturais. Em 
busca de uma maior lipofilicidade, oximas neutras 
e derivados de oximas contendo heterociclos com 
nitrogênio em sua estrutura têm sido testados como 
potenciais novas classes de reativadores de AChE 
[45]–[47]. Outros tipos de abordagens com o mes-
mo objetivo são dadas pela modificação estrutural 
das oximas catiônicos por meio da adição de átomos 
de flúor ligados aos anéis piridínicos e pela trans-
formação destas oximas em pró-fármacos – fárma-
cos administrados em uma forma inativa e ativados 
após uma biotransformação dentro do organismo 
por meio de alguma rota metabólica [48]. Além das 
abordagens químicas, existem também pesquisas 
que buscam novos métodos de administração dos 
antídotos, desenvolvendo técnicas que facilitem a 
entrada do reativador noSNC, tais como a adminis-
tração intranasal [49].

No que tange as metodologias de síntese apre-
sentadas, levando-se em consideração o número de 
etapas e rendimento, nota-se que as metodologias 
sintéticas mais eficientes foram aquelas apresentadas 
por Ginsburg (uma etapa; rendimento de 88%) e Ellin 
(uma etapa; rendimento de 85-90%).

4. Conclusão
Foram descritas diversas metodologias sintéticas 

para a 2-PAM, uma das mais relevantes dentre as oxi-
mas piridínicas disponíveis no combate à intoxicação 
por agentes neurotóxicos. Foram pesquisados arti-
gos publicados desde 1955, ano em que a 2-PAM foi 
reportada pela primeira vez. Na discussão, as rotas 
sintéticas foram comparadas em termos de eficiên-
cia, levando-se em consideração o número de etapas, 
rendimento e a praticidade das sínteses, e foi feita 
uma comparação entre as propriedades e limitações 
da 2-PAM em relação a outros reativadores de AChE. 
Também foram citadas abordagens na pesquisa por 
novas classes de reativadores de AChE.

Lista de abreviaturas e siglas

2-PAM = Pralidoxima

ACh = Acetilcolina

AChE = Acetilcolinesterase

CPAQ = Convenção de Proibição  
de Armas Químicas

DA = Doença de Alzheimer

DMF = N,N-Dimetilformamida

EC = Número EC (em inglês,  
Enzyme Comission Number)

HI-6  = Asoxima

OBD = Obidoxima

RENAME = Relação Nacional de  
Medicamentos Essenciais

SNC = Sistema Nervoso Central

TMB-4 = Trimedoxima
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