Estudo Prospectivo sobre Biossensores de Aplicação Militar

  • Prof. Dr. Runer Augusto Marson Instituto de Pesquisa da Capacitação Física do Exército
  • Sr. Ricardo Wagner Amorim Guimarães Agência e Gestão e Inovação Tecnológica (AGITEC)
Palavras-chave: Biossensores, Sensor fisiológico, Militar

Resumo

O monitoramento remoto por meio de biossensores acoplados ao corpo humano durante atividade na doutrina militar é fundamental para o acompanhamento do estado de sáude do soldado. Sendo assim, o presente estudo teve como objetivo analisar a utilização de sensores fisiológicos acoplados ao corpo humano. Para responder esta finalidade foi utilizado o método de revisão integrativa e de análise de prospecção tecnológica. Após esta averiguação foi identificado um aumento tanto nas publicações quanto nos depósitos de patentes a partir do século XX. Nestas inserções de patentes os Estados Unidos da América detém o maior número de depósitos e de publicações. Contudo, um crescente campo de estudo e de inovação está associado aos sensores neurofisiológicos aplicados em demandas militares operacionais.

Downloads

Não há dados estatísticos.

Biografia do Autor

Prof. Dr. Runer Augusto Marson, Instituto de Pesquisa da Capacitação Física do Exército

Bacharel em Educação Física (2000), Mestrado (2003) em Ciências da Motricidade (Biomecânica), Doutorado (2008) em Ciências Biológicas (Biologia Celular e Molecular) pela Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP) e Pós Doutorado em Engenharia Biomédica pela Universidade do Vale da Paraíba (UNIVAP), Ciências aplicada à Saúde pela Universidade Federal Fluminense (UFF) e Educação Física pela Universidade Federal do Rio de Janeiro (UFRJ). Atualmente é pesquisador do Centro de Capacitação Física do Exército (CCFEx) no Instituto de Pesquisa da Capacitação Física do Exército (IPCFEx). Tem experiência na área de Educação Física, com ênfase em Biomecânica, Neuromecânica aplicada, Processamento de Sinais Digitais e Desempenho Operacional Militar.

Sr. Ricardo Wagner Amorim Guimarães, Agência e Gestão e Inovação Tecnológica (AGITEC)

Possui graduação em Engenharia Elétrica pelo Instituto Militar de Engenharia (2001). Trabalhou em diversos projetos governamentais nas seguintes áreas: Engenharia Elétrica - automação eletrônica de processos elétricos e Industriais, instalações de baixa e média tensão, sistemas de proteção contra descargas atmosféricas, projeto e construção de subestações e edificações residenciais e industriais, diagnósticos energéticos, vistorias técnicas e manutenção em ambientes especiais. Gestão da Inovação - Palestras, disciplinas em cursos de extensão, estudos e projetos de prospecção tecnológica, technology roadmaps de programas estratégicos militares. Atualmente é adjunto à Seção de Informações Tecnológicas da Agência de Gestão e Inovação do Exército Brasileiro. (Texto informado pelo autor)

Referências

ALIOFKHAZRAEI, M.; ALI, N. Recent Developments in Miniaturization of Sensor Technologies and Their Applications. Comprehensive Materials Processing, v. 13, p.245-306, ABR 2014. DOI: 10.1016/B978-0-08-096532-1.01309-1.

BARTHELMESS, P.; OVIATT, S. Chapter 12 - Multimodal Interfaces. Combining Interfaces to Accomplish a Single Task. In: Philip Kortum (Ed.), Interactive Technologies, HCI Beyond the GUI, Morgan Kaufmann, JUL 2008, p. 391-444. DOI:10.1016/B978-0-12-374017-5.00012-2.

BÖHM, B. et al. Effects of mobile health including wearable activity trackers to increase physical activity outcomes among healthy children and adolescents: Systematic review. Journal of Medical Internet Research: MHealth Uhealth, v. 7, n 4:e8298, ABR 2019. DOI: 10.2196/mhealth.8298.

BRICKWOOD, K. J. et al. Consumer-based wearable activity trackers increase physical activity participation: Systematic review and meta-analysis. Journal of Medical Internet Research: MHealth Uhealth, v. 7, n 4:e8298, ABR 2019, DOI:10.2196/11819.

BULLER, M. J.; WELLES, A. P.; FRIEDL, K. E. Wearable physiological monitoring for human thermal-work strain optimization. Journal of Applied Physiology, v. 124:2, n 2, p.432-441, 2018b, DOI: 10.1152/japplphysiol.00353.2017.

CANNARD, C. et al. Chapter 16 - Self-health monitoring and wearable neurotechnologies. In: RAMSEY, N. F.; MILLÁN, J. R. (Eds) Handbook of Clinical Neurology, MAR 2020. v. 168. p.207-232. DOI: 10.1016/B978-0-444-63934-9.00016-0.

DECAENS, J.; VERMEERSCH, O. 23 - Wearable technologies for personal protective equipment: Embedded textile monitoring sensors, power and data transmission, end-life indicators. In: KONCAR, V. Smart Textiles and Their Applications, ABR 2016. p.519-537. DOI: 10.1016/B978-0-08-100574-3.00023-0.

DORN, D. et al. Automatic identification of physical activity type and duration by wearable activity trackers: A validation study. Journal of Medical Internet Research: MHealth Uhealth, v. 7, n 5, p. 13547, MAIO 2019. DOI: 10.2196/13547.

EVTUGYN, G. Biosensors : Essentials. Biosensors: Essentials, Springer Berlin Heidelberg, 2014. v. 84. p.21-97.

FRIEDL, K. E. Military applications of soldier physiological monitoring. Journal of Science and Medicine in Sport, v. 21, n 11, p. 1147–1153, JUN 2018. DOI: https://doi.org/10.1016/j.jsams.2018.06.004.

HOYT, R. W. et al. Combat medical informatics: present and future. In: Proceedings of the AMIA: Annual Symposium, 2002. p. 335.

ILAYARAJA R, ROSHAN J, GANESAN M K, A. M. Smart health monitoring system for soldiers using IoT. Journal of Critical Reviews, v. 7, no 14, p. 847–881, 2020. DOI: http://dx.doi.org/10.31838/jcr.07.14.212.

KHAN, M.; BOUTELLE, M. The military applications of physiological sensors. Trauma (United Kingdom), v. 21, n 1, p. 3-5, JAN 2019. DOI: 10.1177/1460408618810702.

KING, R. C. et al. Application of data fusion techniques and technologies for wearable health monitoring. Medical Engineering and Physics, v. 42, p.1-12, FEV 2017. DOI: 10.1016/j.medengphy.2016.12.011.

LAI, E.; FRIEDL, K. E. Digital soldiers: Transforming personalized health in challenging and changing environments. In: Proceedings of the 6th International Workshop on Wearable, Micro, and Nano Technologies for Personalized Health: “Facing Future Healthcare Needs”, 2009, p. 5-8. DOI: 10.1109/PHEALTH.2009.5754831.

LEE, A. M. et al. Efficacy and effectiveness of mobile health technologies for facilitating physical activity in adolescents: Scoping review. Journal of Medical Internet Research: Mhealth Uhealth, v. 21, n 2, p. e11847, FEV 2019. DOI: 10.2196/11847.

LI, C. et al. A method for remotely sensing vital signs of human subjects outdoors. Sensors (Switzerland), v. 15, n 7, p.14830-14844, JUN 2015. DOI:10.3390/s150714830.

LIM, H. B. et al. A soldier health monitoring system for military applications. In: 2010 International Conference on Body Sensor Networks, JUN 2010, p.246-249. DOI: 10.1109/BSN.2010.58

MATHAVAN, V. et al. War field soldier body condition monitoring system. Materials Today: Proceedings, v. 37, p. 2798-2802, OUT 2020. DOI: 10.1016/j.matpr.2020.08.651

MATTHEWS, R. et al. A wearable physiological sensor suite for unobtrusive monitoring of physiological and cognitive state. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. AGO 2007, p. 5276-5281. DOI: 10.1109/IEMBS.2007.4353532.

MCKENNA, T. M. et al. The physiology analysis system: An integrated approach for warehousing, management and analysis of time-series physiology data. Computer Methods and Programs in Biomedicine, v. 86, n 1, p. 62-72, ABR 2007. DOI: 10.1016/j.cmpb.2007.01.003.

MILES, I. The development of technology foresight: A review. Technological Forecasting and Social Change, v. 77, n 9, p.1448-1456, 2010. DOI: 10.1016/j.techfore.2010.07.016.

MIN, J. et al. Wearable electrochemical biosensors in North America. Biosensors and Bioelectronics, v. 172, p. e112750, JAN 2021. DOI: 10.1016/j.bios.2020.112750.

MOHINO-HERRANZ, I. et al. Assessment of mental, emotional and physical stress through analysis of physiological signals using smartphones. Sensors (Switzerland), v. 15, n 10, p. 25607-25627, OUT 2015, DOI: 10.3390/s151025607.

MONTGOMERY, K. et al. Lifeguard - A personal physiological monitor for extreme environments. In: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology, SET 2004, p2192-2195. DOI: 10.1109/IEMBS.2004.1403640.

NATIONAL RESEARCH COUNCIL. Capturing the Full Power of Biomaterials for Military Medicine: Report of a Workshop. National Academies Press, 2004.

NWEKE, H. F. et al. Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions. Information Fusion, v. 46, p. 147-170 MAR 2019. DOI: 10.1016/j.inffus.2018.06.002.

PARANHOS, R. de C. S.; RIBEIRO, N. M. Importância da prospecção tecnológica em base em patentes e seus objetivos da busca. Cadernos de Prospecção, v. 11, n 5, p.1274, DEZ 2018. ISSN: 1983-1358, DOI: 10.9771/cp.v12i5.28190.

PHAM, S. et al. Wearable sensor system to monitor physical activity and the physiological effects of heat exposure. Sensors (Switzerland), v. 20, n 3, p. 855, FEV 2020. DOI: 10.3390/s20030855.

PIMENTA, A. et al. A neural network to classify fatigue from human-computer interaction. Neurocomputing, v. 172, p.413-426, JAN 2016. DOI: 10.1016/j.neucom.2015.03.105.

REIFMAN, J. et al. Military research needs in Biomedical Informatics. Journal of the American Medical Informatics Association, v. 9, n 5 p. 509-519, SET 2002. DOI: 10.1197/jamia.M1044.

RYAN, K. L. et al. Advanced technology development for remote triage applications in bleeding combat casualties. U.S. Army Medical Department Journal, ABR 2011.

SALINAS, J. et al. Advanced monitoring and decision support for battlefield critical care environment. U.S. Army Medical Department journal, ABR 2011.

SAVELL, C. T. et al. Life sign decision support algorithms. In: Medinfo, JAN 2004, p. 1453-1457.

SAWKA, M. N. ; FRIEDL, K. E. Emerging Wearable Physiological Monitoring Technologies and Decision Aids for Health and Performance. Journal Applied of Physiology, v. 124, n. 2, p.432-441, FEV 2018. DOI: 10.1152/japplphysiol.00964.2017.

SHI, H. et al. Systematic analysis of a military wearable device based on a multi-level fusion framework: Research directions. Sensors (Switzerland), v. 19, n. 12, p. 2651, JUN 2019. DOI: 10.3390/s19122651.

SHUMWAY, J. et al. Biomarkers, Creatine Kinase, and Kidney Function of Special Operation Candidates During Intense Physiological Training. Military Medicine, v. 185, n 7–8, p. e982-e987, JUL 2020. DOI: 10.1093/milmed/usaa079.

SOARES, L. et al. Literature review: particularities of each type of study / Revisão de literatura: particularidades de cada tipo de estudo. Revista de Enfermagem da UFPI, v. 2, n 5, p.14-18, DEZ 2013. DOI: 10.26694/reufpi.v2i5.1200.

SOUZA, M. T. De; SILVA, M. D. da; CARVALHO, R. de. Revisão integrativa: o que é e como fazer. Einstein, v. 8, n 1, p.102-106,MAR 2010. DOI: 10.1590/S1679-45082010RW1134

STACEY, M. J.; HILL, N.; WOODS, D. Physiological monitoring for healthy military personnel. Journal of the Royal Army Medical Corps, v. 164, n. 4, p. 290–292, AGO 2018. DOI: 10.1136/jramc-2017-000851.

WYSS, T.; MÄDER, U. Energy expenditure estimation during daily military routine with body-fixed sensors. Military Medicine, v. 176, n 5, p. 494-499,MAIO 2011. DOI: 10.7205/MILMED-D-10-00376.

Publicado
2021-06-23
Como Citar
Marson, R. A., & Guimarães, R. W. A. (2021). Estudo Prospectivo sobre Biossensores de Aplicação Militar. Revista Agulhas Negras, 5(5), 1-13. Recuperado de http://ebrevistas.eb.mil.br/aman/article/view/6928
Seção
Artigos Científicos

##plugins.generic.recommendByAuthor.heading##