Stochastic Simulation with Human Interaction in Remotely Piloted Aircraft Systems (SARP)

Keywords: SARP, HITL, HOTL, Markov Chain

Abstract

Due to advances in artificial intelligence, the robot may have some level of autonomy to decide what it considers ideal for the mission or objective it has to fulfill. In this way, the decision maker that is contained in the SARP can, at some point, choose whether to obey the human operator or to continue executing its planned mission. The objective of this research is to propose a stochastic simulation model that evaluates the influence of operator commands on robot decision mechanisms. Under an exploratory, methodological research of applied nature and a quantitative approach, simulations will be carried out using the Markov chain through the PRISM tool, simulating semi-autonomous agents in which human interaction is performed without restrictions. In this model, human interaction obviously affects the overall activities of the SARP operation. The objective is to obtain data while this interaction affects the robot's plans to propose a model in which the human will influences the robot's decisions in cases that either the survival or the mission is not compromised. This is important because human decisions are slow and can be delayed or truncated due to communication channel problems. An air reconnaissance scenario was considered through the use of the SARP with some degree of autonomy and receiving remote human commands at the same time. The results show that depending on the type of human interaction and its frequency, it is possible to make human interaction compatible without compromising the robot or the mission.

Downloads

Download data is not yet available.

Author Biographies

Richard Siqueira MIRANDA, Universidade de Brasília - UNB

Possui Graduação em Processamento de Dados na Faculdade Salesiana de Americana/SP em 1992.
Realizou o Curso de Oficial Complementar em Informática da Escola de Administração do Exército em 2000.
Foi chefe da Seção de Informática do Centro de Capacitação Física do Exército/RJ no período de 2001 a 2013, onde atuou na Infraestrutura de TI.
Atualmente é Adjunto da Assessoria de Tecnologia de Informação da Diretoria de Controle de Efetivos e Movimentações (DCEM/Exército) desde 2014 e Mestrando na Universidade de Brasília em Infraestrutura de TI (PPCA 2019).

Edison Ishikawa, Universidade de Brasília

Possui graduação em Engenharia de Computação pelo Instituto Militar de Engenharia (1992), mestrado em Informática pela Pontifícia Universidade Católica do Rio de Janeiro (1998) e doutorado em Engenharia de Sistemas e Computação pela Universidade Federal do Rio de Janeiro (2003). Atualmente é professor adjunto da Universidade de Brasília. Suas áreas de interesse são sistemas distribuídos e paralelos e suas aplicações em armazenagem, recuperação e distribuição de conteúdo multimedia, computação semântica, jornalismo digital, informática na educação e educação em computação.

Marcelo Antônio Marotta, Universidade de Brasília

Bacharel em Ciência da Computação pela Universidade Federal de Itajubá (UNIFEI) em 2010. Mestrado pelo Instituto de Informática da Universidade Federal do Rio Grande do Sul (UFRGS) em 2013. Bolsa de estudos no exterior, um ano no Grupo de Pesquisa em Telecomunicações do Trinity College Dublin, Irlanda (2016). Doutorado em Ciência da Computação, Grupo de Redes de Computadores do Instituto de Informática da Universidade Federal do Rio Grande do Sul (UFRGS) em 2019. Coordenador de P&D do Departamento CTIC da Rede Nacional de Pesquisas (RNP), Brasília, DF, Brasil (2017~2019). Professor adjunto do departamento de Ciência da Computação da Universidade de Brasília (UnB), Brasília, DF, Brasil (2019). Atualmente lida com pesquisas relacionadas a Redes de Acesso a Rádio baseadas em Conceitos de Nuvem (C-RAN), Redes de Próxima Geração, Internet do Futuro, Gerenciamento de Processos de Negócios, Rede Definida por Software, Internet das Coisas, Rádio Definido por Software e Rádio Cognitivo.

References

BRASIL. Ministério da Defesa. Manual de Campanha EB20-MC-10.214 Vetores Aéreos da Força Terrestre. 1ª Edição, Brasília-DF, 2014a Disponível em: https://bdex.eb.mil.br/jspui/bitstream/123456789/88/1/EB20-MC-10.214.pdf. Acesso em 01 FEV 2021.

BRASIL. Ministério da Defesa. MD33-M-13 Medidas De Coordenação Do Espaço Aéreo Nas Operações Conjuntas. 1ª Edição, Brasília-DF. 2014b. Disponível em: https://www.gov.br/defesa/pt-br/arquivos/legislacao/emcfa/publicacoes/operacoes/md33a_ma_13a_medidasa_coora_espa_aera_opa_cja_1a_2014.pdf. Acesso em: 01 FEV 2021.

FERREIRA, V. E. N. et al. A simulação virtual tática no ensino e no treinamento militar. Defesa Net. 2017. Disponível em: https://www.defesanet.com.br/doutrina/noticia/26410/A-simulacao-virtual-tatica-no-ensino-e-no-treinamento-militar/. Acesso em: 10 MAI 2021.

FOTOUHI, A. et al. 2019. Survey on UAV Cellular Communications: Practical Aspects, Standardization Advancements, Regulation, and Security Challenges. IEEE Communications Surveys and Tutorials, 2019. p. 3417-3442. Disponível em: https://ieeexplore.ieee.org/document/8675384. DOI: 10.1109/COMST.2019.2906228. Acesso em: 01 JUL 2021.

HAAS, M. W.; MILLS, R.; GRIMAILA M. R.; Aiding Understanding of Contested Information Environment Affect on Operations. In: ROTHROCK, L.; NARAYANAN, S. (Ed) Human-in-the-Loop Simulations. Heidelberg: Springer, 2011. p. 175-202. Disponível em https://www.researchgate.net/publication/268687841_Aiding_Understanding_of_Contested_Information_Environment_Affect_on_Operations. DOI: 10.1007/978-0-85729-883-6 . Acesso em: 01 FEV 2021.

ISMAIL, R. M.; MUTHUKUMARASWAMY, S.; SASIKALA A. Military Support and Rescue Robot. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). Madurai: IEEE. 2020, p. 156-162. DOI: 10.1109/ICICCS48265.2020.9121041. Acesso em: 01 FEV 2021.

KWIATKOWSKA, M.; NORMAN, G.; PARKER, D. PRISM 4.0: Verification of Probabilistic Real-Time Systems. GOPALAKRISHNAN G., QADEER S. (Ed) Computer Aided Verification – CAV; 2011. Lecture Notes in Computer Science, vol 6806. Springer, Berlin, Heidelberg. p. 585-591. Disponível em https://prismmodelchecker.org/papers/cav11.pdf. DOI: 10.1007/978-3-642-22110-1_47 . Acesso em: 01 FEV 2021.

KWIATKOWSKA, M.; NORMAN, G.; PARKER, D. PRISM: Probabilistic model checking for performance and reliability analysis. ACM SIGMETRICS Performance Evaluation Review, Newy York, 2009, vol. 36, n. 4, MAR, p. 40-45. Disponível em: https://dl.acm.org/doi/10.1145/1530873.1530882. DOI: 10.1145/ 1530873.1530882. Acesso em: 01 FEV 2021.

MEDEIROS NETO, M. P. Veículos aéreos não tripulados e sistema de entrega: estudo, desenvolvimento e testes. 2016. 103f: il. Dissertação (Mestrado em Sistemas e Computação) - Universidade Federal Do Rio Grande Do Norte, Natal, RN, 2016. Disponível em: https://repositorio.ufrn.br/handle/123456789/21459. Acesso em: 01 FEV 2021.

METROPOLIS, N. The beginning of the Monte Carlo method. Los Alamos Science, Special Issue dedicated to Stanislaw Ulam: 125–130, 1987. Dsiponível em: https://library.lanl.gov/cgi-bin/getfile?00326866.pdf. Acesso em: 01 FEV 2021.

MIZOKAMI, K. The Army Is Forming a Whole Family of Armed Robot Tanks. Pouplar Mechanics. 2021 Disponível em: https://www.popularmechanics.com/military/weapons/a34659199/army-family-robotic-tanks/. Acesso em 07 JAN de 2021.

NAURU 500C VTOL. Xmobots. 2021. Disponível em: https://xmobots.com.br/nauru-500c-vtol . Características do NAURU 500C VTOL Acesso em: 15 JAN 2021.

PIMENTEL, J. Avaliação e Correção do Modelo Cinemático de Robôs Móveis Visando a Redução de Erros no Seguimento de Trajetórias. 2003. 124p. Dissertação (Mestrado em Automação e Informática industrial) – Centro de Ciências Tecnológicas da Universidade do Estado de Santa Catarina, Joinville, SC, 2003. Disponível em: https://ppgee.ufmg.br/defesas/1121M.PDF. Acesso em: 01 FEV 2021.

PRISM - Probabilistic Symbolic Model Checker. 2021. Disponível em http://www.prismmodelchecker.org. Acesso em: 10 MAI 2021.

ROSS, S. M. Introduction to Probability Models Eleven Edition. Academic Press, 2014. Disponível em http://mitran-lab.amath.unc.edu/courses/MATH768/biblio/introduction-to-prob-models-11th-edition.PDF. ISBN 978-0-12-407948-9. Acesso em: 01 FEV 2021.

SYDNEY J.; FREEDBERG JR. Army Robots: Two Contracts Forward, One Contract Back. Breaking Defense, 2020. Disponível em https://breakingdefense.com/2020/01/army-robots-two-contracts-forward-one-contract-back/ . Acesso em: 07 JAN 2021.

TOMASZEWSKI, J. E. Overview of the role of artificial intelligence in pathology: the computer as a pathology digital assistant. In: COHEN, S. (Ed). Artificial Intelligence and Deep Learning in Pathology. 1 ed: Elsevier, 2021, p. 237-262 Disponível em https://www.sciencedirect.com/science/article/pii/B9780323675383000117. DOI: https://doi.org/10.1016/B978-0-323-67538-3.00011-7. Acesso em: 01 JUL 2021.

Published
2022-03-14
How to Cite
MIRANDA, R. S., Ishikawa, E., & Marotta, M. A. (2022). Stochastic Simulation with Human Interaction in Remotely Piloted Aircraft Systems (SARP). Revista Agulhas Negras, 6(7), 39-56. Retrieved from http://ebrevistas.eb.mil.br/aman/article/view/8070