Estudo de Prospectiva sobre Tecnologias de Biossensores
aplicações de uso dual nos âmbitos civil e militar
DOI:
https://doi.org/10.70545/ran.v9i13.13517Palavras-chave:
Monitoramento Fisiológico, Dispositivos Eletrônicos Vestíveis, Desempenho HumanoResumo
Este estudo prospectivo analisa o desenvolvimento de tecnologias de biossensores com potencial de uso dual nos âmbitos civil e militar. Busca-se antecipar tendências, avaliar níveis de maturidade tecnológica e mapear aplicações voltadas ao monitoramento da saúde, ao aprimoramento do desempenho físico e à prontidão operacional. Os biossensores evoluíram significativamente, passando de dispositivos rudimentares para sistemas vestíveis, implantáveis e ingeríveis, com capacidade de monitoramento fisiológico em tempo real. Avanços como a miniaturização, a incorporação de inteligência artificial e o uso de comunicações sem fio ampliam sua aplicabilidade em ambientes operacionais exigentes. No contexto militar, essas tecnologias permitem o monitoramento contínuo de indicadores como fadiga, estresse e risco de lesão. Já na esfera civil, transformam práticas em medicina personalizada, saúde ocupacional, ciências do esporte e telessaúde. A metodologia emprega varredura de horizonte tecnológico (horizon scanning), análise de tendências em patentes e publicações, avaliação do Nível de Maturidade Tecnológica (Technology Readiness Level – TRL) e as ferramentas SWOT e PESTEL. Os resultados indicam a liderança dos Estados Unidos no desenvolvimento da área, com destaque para sensores neurofisiológicos e plataformas multimodais. Projeções para 2030–2040 incluem cenários que vão desde integração ética plena até desafios relacionados à privacidade, riscos ciberbiológicos e governança do uso dual. A exploração responsável dessas tecnologias exige investimentos coordenados em pesquisa, cooperação interdisciplinar e marcos éticos e regulatórios robustos. Conclui-se que os biossensores constituem ativos estratégicos para a construção de sistemas de saúde e defesa mais resilientes e orientados por dados.
Downloads
Referências
AIDMAN, Eugene. Cognitive fitness framework: towards assessing, training and augmenting individual-difference factors underpinning high-performance cognition. Frontiers in human neuroscience, v. 13, p. 466, 2020. DOI: https://doi.org/10.3389/fnhum.2019.00466. DOI: https://doi.org/10.3389/fnhum.2019.00466
ALMER, Alexander et al. Real-time remote stress monitoring based on specific stress modelling considering load characteristics of different military forces. Cognitive Computing and Internet of Things, v. 73, p. 83-92, 2023. DOI: http://doi.org/10.54941/ahfe1003977. DOI: https://doi.org/10.54941/ahfe1003977
ALPYSBAYEV, Kaisar; ALPYSBAYEV, Serik. Foresight technologies and strategic planning: interaction effect. Education Quality Assurance, p. 33-40, UDC 378, 2023. DOI: https://doi.org/10.58319/26170493_2023_1_33. DOI: https://doi.org/10.58319/26170493_2023_1_33
ANTONY, Anita. Flexible and wearable biosensors: revolutionizing health monitoring. In: Biosensors: Developments, Challenges and Perspectives. Singapore: Springer Nature Singapore, p. 237-258, 2024. Disponível em: https://link.springer.com/chapter/10.1007/978-981-97-3048-3_12. DOI: https://doi.org/10.1007/978-981-97-3048-3_12
BOUDERHEM, Rabaï. Ethical and Regulatory Challenges for AI Biosensors in Healthcare. Proceedings, v. 104, n. 1, p. 37, 2024. DOI: https://doi.org/10.3390/proceedings2024104037. DOI: https://doi.org/10.3390/proceedings2024104037
BRUCKNER-LEA, Cindy. Biosensor systems for homeland security. The Electrochemical Society Interface, v. 13, n. 2, p. 36-42, 2004. DOI: 10.1149/2.f06042if. Dsiponível em: https://iopscience.iop.org/article/10.1149/2.F06042IF. DOI: https://doi.org/10.1149/2.F06042IF
CHENG, Jianqun et al. Advancements in Wearable Sensor Technology for Remote Health Monitoring. In: 2024 IEEE 10th World Forum on Internet of Things (WF-IoT), p. 1-5, 2024. DOI: 10.1109/WF-IoT62078.2024.10811387. DOI: https://doi.org/10.1109/WF-IoT62078.2024.10811387
DALLOUL, Ahmed Hany; MIRAMIRKHANI, Farshad; KOUHALVANDI, Lida. A review of recent innovations in remote health monitoring. Micromachines, v. 14, n. 12, p. 2157, 2023. DOI: 10.3390/mi14122157.. DOI: https://doi.org/10.3390/mi14122157
DAVIS, Lynn E. The Wassenaar Arrangement. Department of State Dispatch, v. 7, p. 76-79, 1996. Disponível em: https://apps.dtic.mil/sti/pdfs/ADA496568.pdf.
DE LACERDA FILHO, Eduardo Magalhães et al. Improving data security, privacy, and interoperability for the IEEE biometric open protocol standard. IEEE Access, v. 10, p. 26985-27001, 2020. DOI: 10.1109/ACCESS.2020.3046630. DOI: https://doi.org/10.1109/ACCESS.2020.3046630
FARZIN, Mohammad Ali; NAGHIB, Seyed Morteza; RABIEE, Navid. Advancements in bio-inspired self-powered wireless sensors: Materials, mechanisms, and biomedical applications. ACS Biomaterials Science & Engineering, v. 10, n. 3, p. 1262-1301, 2024. DOI: https://doi.org/10.1021/acsbiomaterials.3c01633. DOI: https://doi.org/10.1021/acsbiomaterials.3c01633
FRIEDL Karl E. Military applications of soldier physiological monitoring. Journal of Science Medicine Sport, v. 21, n. 11, p. 1147-1153, 2018. DOI: 10.1016/j.jsams.2018.06.004.. DOI: https://doi.org/10.1016/j.jsams.2018.06.004
GAYATHRI, C., & SATHYA, D. Protection of security and privacy for medical data in wireless medical sensor networks. IJARSE, v.1, n. 4, Special Issue (01), p. 372-379, 2015. Disponível em: https://www.ijarse.com/images/fullpdf/1425804513_415.pdf.
GIBSON, Elizabeth et al. Technology foresight: A bibliometric analysis to identify leading and emerging methods. Форсайт, v. 12, n. 1 (eng), p. 6-24, 2018. Disponível em: https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1156&context=etm_fac. DOI: https://doi.org/10.17323/2500-2597.2018.1.6.24
GOMATHY, DR. C.; GEETHA, DR. V.; BATHRINATHAN, S. R.; SRIPADA, S. K. Exploring the ethical considerations of biometrics in cybersecurity. IJREM, v. 8, n. 9, p. 1-5, 2024. DOI: 10.55041/IJSREM37507. DOI: https://doi.org/10.55041/IJSREM37507
GRAHAM, Thomas W.; SABELNIKOV, Alexander G. How Much is Enough: Real-time detection and identification of biological weapon agents. Journal of Homeland Security and Emergency Management, v. 1, n. 3, 2004. DOI: https://doi.org/10.2202/1547-7355.1017. DOI: https://doi.org/10.2202/1547-7355.1017
HE, Congying; CHANG, Yang; KO, Li-Wei. Brain-Computer Interface for Multi-Parameter Mental State Evaluation. In: 2022 International Conference on Fuzzy Theory and Its Applications (iFUZZY), p. 01-05, 2022. DOI: 10.1109/iFUZZY55320.2022.9985229. DOI: https://doi.org/10.1109/iFUZZY55320.2022.9985229
HU, Margaret. Biometric ID cybersurveillance. Indiana Law Journal, v. 88, p. 1475-558, 2013. Disponível em: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2041946.
KIM, Hee Jin. Regulating Surveillance Technology through the Wassenaar Arrangement ‒ Some Implications for Dual-Use Export Controls under the Foreign Trade Act of Korea. International Law Review, v.61, p. 37–63, 2022. DOI: https://doi.org/10.25197/kilr.2022.61.37. DOI: https://doi.org/10.25197/kilr.2022.61.37
KOLSTOE, Simon E. A framework for reviewing dual use research. In: Ethical Issues in Covert, Security and Surveillance Research. Emerald Publishing Limited, v. 8, p. 131-143, 2021. DOI: 10.1108/S2398-601820210000008010. DOI: https://doi.org/10.1108/S2398-601820210000008010
KUMAR, Siddhant; UPADHYAY, Sarthak; JINDAL, Sanskar; SHARMA, Upasana. Health Monitoring Systems for Military Personnel Using Sensor-based Systems. IJRASET, v. 12, n. V, p. 3805-11, 2024. DOI: https://doi.org/10.22214/ijraset.2024.62455. DOI: https://doi.org/10.22214/ijraset.2024.62455
LAARNI, Jari et al. Promoting soldier cognitive readiness for battle tank operations through bio-signal measurements. In: Advances in Neuroergonomics and Cognitive Engineering: Proceedings of the AHFE 2019 International Conference on Neuroergonomics and Cognitive Engineering, and the AHFE International Conference on Industrial Cognitive Ergonomics and Engineering Psychology, July 24-28, 2019, Washington DC, USA 10. Springer International Publishing, p. 142-154, 2020. DOI: https://doi.org/10.1007/978-3-030-20473-0_15. DOI: https://doi.org/10.1007/978-3-030-20473-0_15
MALASINGHE, Lakmini P.; RAMZAN, Naeem; DAHAL, Keshav. Remote patient monitoring: a comprehensive study. Journal of Ambient Intelligence and Humanized Computing, v. 10, p. 57-76, 2019. DOI: https://doi.org/10.1007/S12652-017-0598-X. DOI: https://doi.org/10.1007/s12652-017-0598-x
MARSON, R. A.; GUIMARÃES, R. W. A. Estudo Prospectivo sobre Biossensores de Aplicação Militar. Revista Agulhas Negras, v. 5, n. 5, p. 1-13, 23 jun. 2021. DOI: https://doi.org/10.70545/ran.v5i5.6928. DOI: https://doi.org/10.70545/ran.v5i5.6928
MARSON, R. A.; ROESLER, R.; BARROS JUNIOR, A. J. Avanços Tecnológicos para o Desempenho Físico do Soldado. Revista Agulhas Negras, v. 7, n. 9, p. v-viii, 31 jul. 2023. DOI: https://doi.org/10.70545/ran.v7i9.11987. DOI: https://doi.org/10.70545/ran.v7i9.11987
MARSON, R. A.; ROESLER, R.; BARROS JÚNIOR, A. J. Preparação Militar no Século XXI: Prontidão, desempenho físico e resiliência. Revista Agulhas Negras, v. 8, n. Especial, p. v-x, 10 abr. 2025. DOI: https://doi.org/10.70545/ran.v8iEspecial.13365. DOI: https://doi.org/10.70545/ran.v8iEspecial.13365
NOMULA, Varun Kumar. Imperative of Standards and Interoperability in Modern Medicine. FMDB Transactions on Sustainable Health Science Letters, v. 2, n. 1, p. 31–40, 2024. DOI: https://doi.org/10.69888/ftshsl.2024.000170. DOI: https://doi.org/10.69888/FTSHSL.2024.000170
PAPAIOANNOU, Theo. Inclusive innovation for development: meeting the demands of justice through public action. Routledge, 2018. Disponível em: https://www.taylorfrancis.com/books/mono/10.4324/9780203729724/inclusive-innovation-development-theo-papaioannou. DOI: https://doi.org/10.4324/9780203729724
POHANKA, Miroslav. Current trends in the biosensors for biological warfare agents assay. Materials, v. 12, n. 14, p. 2303, 2019. DOI: https://doi.org/10.3390/MA12142303. DOI: https://doi.org/10.3390/ma12142303
RAUSCH, Monika et al. Biosensors supporting healthcare in missions—expert consensus on the status of implementation in the military and future tasks. Health Promotion & Physical Activity, v. 20, n. 3, p. 29-35, 2022. DOI: https://doi.org/10.55225/hppa.438. DOI: https://doi.org/10.55225/hppa.438
RAY, Tyler R. et al. Bio-integrated wearable systems: a comprehensive review. Chemical reviews, v. 119, n. 8, p. 5461-5533, 2019. DOI: https://doi.org/10.1021/ACS.CHEMREV.8B00573. DOI: https://doi.org/10.1021/acs.chemrev.8b00573
SEDENBERG, Elaine; RICHMOND Wong; JOHN Chuang. A window into the soul: Biosensing in public. Surveillance, privacy and public space. Routledge, p. 75-98, 2017. DOI: https://doi.org/10.4324/9781315200811-5
SILVA, Jose Miguel Martinho. Incorporação de Biossensores no Soldado do Futuro (Doctoral dissertation). Academia Militar, Lisboa. 2022
VEENSTRA, Bertil et al. Ambulant Measurements of Physiological Status and Cognitive Performance during Sustained Operations. Royal Netherlands Army, Training Medicine and Training Physiology, 2009. Disponível em: https://apps.dtic.mil/sti/pdfs/ADA568120.pdf.
VELAYUTHAM, Jayasudha; MARIAPPAN, Siva Ananth; MANICKAM, Pandiaraj. Emerging (bio) sensor technologies for monitoring vital markers of military, mining, and defense healthcare. In: Health and Environmental Applications of Biosensing Technologies. Elsevier, p. 393-412, 2024. DOI: https://doi.org/10.1016/b978-0-443-19039-1.00018-3. DOI: https://doi.org/10.1016/B978-0-443-19039-1.00018-3
WARFADE, Tejaswini S.; DHOKE, Akash P.; KITUKALE, M. D. Biosensors in healthcare: Overcoming challenges and pioneering innovations for disease management. World Journal of Biology Pharmacy and Health Sciences, v. 21, n. 1, p. 350-358, 2025. DOI: https://doi.org/10.30574/wjbphs.2025.21.1.0047. DOI: https://doi.org/10.30574/wjbphs.2025.21.1.0047

